Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy
Abstract
1. Introduction
2. The Synthesis of 2D Ultrathin Nanomaterials
3. Regulations on Ultrathin Nanomaterials for Energy Catalysis
4. Summary and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 752–7535. [Google Scholar] [CrossRef]
- Hu, H.; Li, Q.; Li, L.Q.; Teng, X.L.; Feng, Z.X.; Zhang, Y.L.; Wu, M.B.; Qiu, J.S. Laser irradiation of electrode materials for energy storage and conversion. Matter 2020, 3, 95–126. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433. [Google Scholar] [CrossRef]
- Prabhu, P.; Jose, V.; Lee, J.M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv. Funct. Mater. 2020, 30, 1910768. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Hou, Y.X.; Lv, J.Q.; Quan, W.W.; Lin, Y.B.; Hong, Z.S.; Huang, Y.Y. Strategies for Electrochemically Sustainable H2 Production in Acid. Adv. Sci. 2022, 9, 2104916. [Google Scholar] [CrossRef]
- Li, L.Q.; Tang, C.; Jin, H.Y.; Davey, K.; Qiao., S.-Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, G.; Qu, J.H.; Liu, H.J. Disordering the atomic structure of Co(II) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Xie, J.F.; Zhang, H.; Li, S.; Wang, R.X.; Sun, X.; Zhou, M.; Zhou, J.F.; Lou, X.W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Chen, F.; Ma, T.Y.; Zhang, T.R.; Zhang, Y.H.; Huang, H.W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Gao, Y.; Cao, S.Y.; Chen, H.; Yao, Y.; Hou, J.G.; Sun, L.C. Assembly of highly efcient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Appl. Catal. B 2018, 227, 54–60. [Google Scholar] [CrossRef]
- Li, L.Y.; Xia, Y.B.; Zeng, M.Q.; Fu, L. Facet engineering of ultrathin two-dimensional materials. Chem. Soc. Rev. 2022, 51, 7327–7343. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Gao, S.; Lei, F.C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, J.; Meng, X.G.; Yu, L.; Deng, D.H.; Bao, X.H. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem. Rev. 2019, 119, 1806–1854. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.W.; Shen, B.J.; Tong, T.; Fu, J.W.; Yu, J.G. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Zhang, J.; Vukmirovic, M.B.; Xu, Y.; Mavrikakis, M.; Adzic, R.R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Das, K.K.; Mansingh, S.; Sultana, S.; Parida, K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord. Chem. Rev. 2022, 469, 214666. [Google Scholar] [CrossRef]
- Han, Q.; Bai, X.; Man, Z.; He, H.; Li, L.; Hu, J.; Alsaedi, A.; Hayat, T.; Yu, Z.; Zhang, W.; et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J. Am. Chem. Soc. 2019, 141, 4209. [Google Scholar] [CrossRef]
- Pandey, M.; Jacobsen, K.W.; Thygesen, K.S. Atomically thin ordered alloys of transition metal dichalcogenides: Stability and band structures. J. Phys. Chem. C 2016, 120, 23024–23029. [Google Scholar] [CrossRef]
- Zhou, J.D.; Zeng, Q.S.; Lv, D.H.; Sun, L.F.; Niu, L.; Fu, W.; Liu, F.C.; Shen, Z.X.; Jin, C.H.; Liu, Z. Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. Nano Lett. 2015, 15, 6400–6405. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q.; Tao, L.; Chen, Z.F.; Lai, H.J.; Xie, W.G.; Xu, J.B. Defect Etching of Phase-Transition-Assisted CVD-Grown 2H-MoTe2. Small 2021, 17, 2102146. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Wang, G.Y.; Tang, Y.N.; Tian, H.; Xu, J.P.; Dai, X.Q.; Xu, H.; Jia, J.F.; Ho, W.; Xie, M.H. Quantum Effects and Phase Tuning in Epitaxial Hexagonal and Monoclinic MoTe2 Monolayers. ACS Nano 2017, 11, 3282–3288. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Feng, W.; Zhang, X.; Chen, X.S.; Liu, G.B.; Qiu, Y.F.; Hasan, T.; Tan, P.H.; Hu, P.A. Anisotropic Growth of Nonlayered CdS on MoS2 Monolayer for Functional Vertical Heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; English, C.R.; Meng, F.; Forticaux, A.; Hamers, R.J.; Jin, S. Highly Active Hydrogen Evolution Catalysis from Metallic WS2 Nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613. [Google Scholar] [CrossRef]
- Yang, S.B.; Gong, Y.J.; Zhang, J.S.; Zhan, L.; Ma, L.L.; Fang, Z.Y.; Vajtai, R.; Wang, X.C.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef]
- Zhu, W.S.; Gao, X.; Li, Q.; Li, H.P.; Chao, Y.H.; Li, M.J.; Mahurin, S.M.; Li, H.M.; Zhu, H.Y.; Dai, S. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew. Chem. Int. Ed. 2016, 55, 10766–10770. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Zhou, H.X.; Liu, D.; Floudas, G.; Wagner, M.; Koynov, K.; Mezger, M.; Butt, H.J.; Ikeda, T. Supramolecular Thiophene Nanosheets. Angew. Chem. Int. Ed. 2013, 52, 4845–4848. [Google Scholar] [CrossRef]
- Ji, M.X.; Di, J.; Zhao, J.Z.; Chen, C.; Zhang, Y.; Liu, Z.H.; Li, H.P.; Xia, J.X.; He, M.Q.; Li, H.M. Orientated dominating charge separation via crystal facet homojunction inserted into BiOBr for solar-driven CO2 conversion. J. CO2 Util. 2022, 59, 101957. [Google Scholar] [CrossRef]
- Zhou, Y.E.; Zhang, L.Y.; Lin, L.H.; Wygant, B.R.; Liu, Y.; Zhu, Y.; Zheng, Y.B.; Mullins, C.B.; Zhao, Y.; Zhang, X.H.; et al. Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO3/BiVO4 Nanoporous Sphere Arrays. Nano Lett. 2017, 17, 8012–8017. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Shao, Y.F.; Nkudede, E.; Liu, Z.H.; Sun, X.; Zhao, J.Z.; Chen, Z.R.; Yin, S.; Li, H.M.; Xia, J.X. Oxygen vacancy triggering the broad-spectrum photocatalysis of bismuth oxyhalide solid solution for ciprofloxacin removal. J. Colloid Interface Sci. 2022, 626, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.R.; He, J.F.; Yao, T.; Sun, Z.H.; Jiang, Y.; Liu, Q.H.; Jiang, S.; Hu, F.C.; Xie, Z.; He, B.; et al. Half-Unit-Cell α-Fe2O3 Semiconductor Nanosheets with Intrinsic and Robust Ferromagnetism. J. Am. Chem. Soc. 2014, 136, 10393–10398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.G.; Zhang, Y.F.; Lin, M.S.; Long, J.L.; Zhang, Z.Z.; Lin, H.X.; Wu, J.C.S.; Wang, X.X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.X.; Ji, M.X.; Xu, L.; Yin, S.; Chen, Z.G.; Li, H.M. Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process. J. Mater. Chem. A 2016, 4, 5051–5061. [Google Scholar] [CrossRef]
- Ji, M.X.; Xia, J.X.; Di, J.; Liu, Y.L.; Chen, R.; Chen, Z.G.; Yin, S.; Li, H.M. Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of Bi4O5I2 towards bisphenol a removal. Chem. Eng. J. 2018, 331, 355–363. [Google Scholar] [CrossRef]
- Wang, B.; Yang, S.Z.; Chen, H.L.; Gao, Q.; Weng, Y.X.; Zhu, W.S.; Liu, G.P.; Zhang, Y.; Ye, Y.Z.; Zhu, H.Y.; et al. Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Appl. Catal. B 2020, 277, 119170. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M.X.; Zhou, J.D.; Fu, Q.D.; Xu, M.Z.; Hao, W.; et al. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792. [Google Scholar] [CrossRef]
- Han, S.G.; Ma, D.D.; Zhou, S.H.; Zhang, K.X.; Wei, W.B.; Du, Y.H.; Wu, X.T.; Xu, Q.; Zou, R.Q.; Zhu, Q.L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B 2021, 283, 119591. [Google Scholar] [CrossRef]
- Zhang, G.G.; Zhang, M.W.; Ye, X.X.; Qiu, X.Q.; Lin, S.; Wang, X.C. Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution. Adv. Mater. 2014, 26, 805–809. [Google Scholar] [CrossRef]
- Liu, Y.W.; Hua, X.M.; Xiao, C.; Zhou, T.F.; Huang, P.C.; Guo, Z.P.; Pan, B.C.; Xie, Y. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Zhang, Z.Y.; Xia, J.X.; Di, J.; Liu, Y.L.; Chen, R.; Yin, S.; Zhang, S.; Li, H.M. Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chin. Chem. Lett. 2018, 29, 805–810. [Google Scholar]
- Maeda, K.; Eguchi, M.; Oshima, T. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 2014, 53, 13164–13168. [Google Scholar] [CrossRef]
- Tang, S.F.; Lu, X.L.; Zhang, C.; Wei, Z.W.; Si, R.; Lu, T.B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, X.; Yang, W.F.; Jia, C.; Chen, X.J.; Ren, W.H.; Smith, S.C.; Zhao, C. Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2020, 59, 21493–21498. [Google Scholar] [CrossRef] [PubMed]
- Si, S.H.; Shou, H.W.; Mao, Y.Y.; Bao, X.L.; Zhai, G.Y.; Song, K.P.; Wang, Z.Y.; Wang, P.; Liu, Y.Y.; Zheng, Z.K.; et al. Low-Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. Angew. Chem. Int. Ed 2022, 61, e202209446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.F.; Zhao, Y.X.; Waterhouse, G.I.N.; Zheng, L.R.; Cao, X.Z.; Teng, F.; Wu, L.Z.; Tung, C.H.; O’Hare, D.; Zhang, T.R. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. Adv. Mater. 2017, 29, 1703828. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, L.X.; Chen, G.F.; Zhang, L.L.; Xue, J.; Wang, H.H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018, 30, 1803694. [Google Scholar] [CrossRef]
- Wang, X.C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Jin, H.Y.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S.Z. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy 2018, 53, 690–697. [Google Scholar] [CrossRef]
- Hou, Y.D.; Laursen, A.B.; Zhang, J.S.; Zhang, G.G.; Zhu, Y.S.; Wang, X.C.; Dahl, S.; Chorkendorff, I. Layered Nanojunctions for Hydrogen-Evolution Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3621–3625. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, L.Z.; Ma, T.Y.; Zhang, Y.H.; Huang, H.W. 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Tan, X.Q.; Ng, S.F.; Mohamed, A.R.; Ong, W.J. Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy 2022, 4. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.W.; Mao, B.G.; Cao, M.H. Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution. Chem. Commun. 2016, 52, 14266. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, G.M.; Yu, Y.; Zhang, L.Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480. [Google Scholar] [CrossRef] [PubMed]








Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, C.; Zhang, M.; Ji, M. Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts 2022, 12, 1167. https://doi.org/10.3390/catal12101167
Liu F, Wang C, Zhang M, Ji M. Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts. 2022; 12(10):1167. https://doi.org/10.3390/catal12101167
Chicago/Turabian StyleLiu, FuJie, Chao Wang, Ming Zhang, and Mengxia Ji. 2022. "Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy" Catalysts 12, no. 10: 1167. https://doi.org/10.3390/catal12101167
APA StyleLiu, F., Wang, C., Zhang, M., & Ji, M. (2022). Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts, 12(10), 1167. https://doi.org/10.3390/catal12101167

