Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites
Abstract
:1. Introduction
2. Recent Advances and Applications
2.1. Photocatalytic Water-Splitting
2.1.1. POMs Modified TiO2 Photo-Catalyst
2.1.2. POMs Modified CdS Photo-Catalyst
2.1.3. POMs Modified Co3O4 Photo-Catalyst
2.1.4. POMs Modified g-C3N4 Photo-Catalyst
2.1.5. POMs Modified Other Semiconductors Photo-Catalyst
2.2. Photo-Electrocatalysis (PEC) for Water-Splitting
2.2.1. Principle of PEC for Water-Splitting
2.2.2. POMs Modified TiO2 Photo-Electrocatalyst
2.2.3. POMs Modified BiVO4 Photo-Electrocatalyst
2.2.4. POMs Modified Other Semiconductors Photo-Electrocatalyst
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, M.T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. 1991, 30, 34–48. [Google Scholar] [CrossRef]
- Li, F.-C.; Tan, L.-K.; Li, X.-L.; Kong, H.-J.; Ge, L.-M.; Yue, L.-Y.; Han, L.F. Syntheses, structures and catalytic properties of Evans-Showell-type polyoxometalate-based 3D metal-organic complexes constructed from the semi-rigid bis(pyridylformyl)piperazine ligand and transition metals. Dalton Trans. 2019, 48, 5831–5841. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.H. Synthesis and Structural Characterization of Lanthanide-Containing Polyoxometalates. Ph.D. Thesis, Jacobs University, Bremen, Germany, February 2011. [Google Scholar]
- Salomon, W.; Roch-Marchal, C.; Mialane, P.; Rouschmeyer, P.; Serre, C.; Haouas, M.; Taulelle, F.; Yang, S.; Ruhlmann, L.; Dolbecq, A. Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chem. Commun. 2015, 51, 2972–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carraro, M.; Gross, S. Hybrid materials based on the embedding of organically modified transition metal oxoclusters or polyoxometalates into polymers for functional applications: A review. Materials 2014, 7, 3956–3989. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Dipazir, S.; Lu, P.; Wang, Y.; Yuan, M.; Li, S.; Zhang, G. Synthesis of polyoxometalates derived bifunctional catalyst towards efficient overall water splitting in neutral and alkaline medium. J. Colloid Interface Sci. 2018, 532, 774–781. [Google Scholar] [CrossRef]
- Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Han, Q.; Ding, Y. Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans. 2018, 47, 8180–8188. [Google Scholar] [CrossRef]
- Ammam, M. Polyoxometalates: Formation, structures, principal properties, main deposition methods and application in sensing. J. Mater. Chem. A 2013, 1, 6291–6312. [Google Scholar] [CrossRef]
- Maya, F.; Paull, B. Recent strategies to enhance the performance of polymer monoliths for analytical separations. J. Sep. Sci. 2019, 42, 1564–1576. [Google Scholar] [CrossRef]
- Roh, H.-S. Nanocatalysts for hydrogen production. Catalysts 2021, 11, 288. [Google Scholar] [CrossRef]
- Rajan, A.G.; Martirez, J.M.P.; Carter, E.A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal. 2020, 10, 11177–11234. [Google Scholar] [CrossRef]
- Shan, C.-H.; Zhang, H.; Chen, W.-L.; Su, Z.-M.; Wang, E.-B. Pure inorganic D–A type polyoxometalate/reduced graphene oxide nanocomposite for the photoanode of dye-sensitized solar cells. J. Mater. Chem. A 2016, 4, 3297–3303. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Wang, X.-L.; Qin, C.; Zhang, Z.-M.; Li, Y.-G.; Chen, W.-L.; Wang, E.-B. Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coord. Chem. Rev. 2016, 313, 94–110. [Google Scholar] [CrossRef]
- Chuncheng, C.; Wei, Z.; Pengxiang, L.; Jincai, Z.; Nick, S. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: Mechanistic implications. Chem. A Eur. J. 2010, 10, 1956–1965. [Google Scholar]
- Park, H.; Choi, W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. J. Phys. Chem. B 2003, 107, 3885–3890. [Google Scholar] [CrossRef]
- Gao, W.; Yu, T.; Du, Y.; Wang, R.; Wu, L.; Bi, L. First orange fluorescence composite film based on Sm-substituted tungstophosphate and its electrofluorochromic performance. ACS Appl. Mater. Interfaces 2016, 8, 11621–11628. [Google Scholar] [CrossRef]
- Hill, C.L.; Bouchard, D.A. Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates. J. Am. Chem. Soc. 1985, 107, 5148–5157. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, X. Progress in photocatalytic hydrogen production of semiconductors with d~(10) and d~0 electronic configuration. Chemistry 2013, 76, 969–975. [Google Scholar]
- Li, L.; Guo, Y.; Zhou, P.; Yu, X.; Kang, W. Preparation of porous H3PW12O40/TiO2 and its photocatalytic activity for degradation of aqueous dyes under visible-light. Chin. J. Catal. 2005, 26, 209–215. [Google Scholar]
- Friesen, D.A.; Headley, J.V.; Langford, C.H. The photooxidative degradation of N-Methylpyrrolidinone in the presence of Cs3PW12O40and TiO2Colloid photocatalysts. Environ. Sci. Technol. 1999, 33, 3193–3198. [Google Scholar] [CrossRef]
- Tada, H.; Hyodo, M.; Kawahara, H. photoinduced polymerization of 1,3,5,7-tetramethylcyclotetrasiloxane by titania particles. J. Phys. Chem. 1991, 95, 10185–10188. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R. Preparation of nanocomposite α-SiW11Ti/PANI/TiO2 and photocatalytic performance. In Proceedings of the 5th National Polyoxometalates Chemistry Symposium of the Chinese Chemical Society, Harbin, China, 15 July 2013. [Google Scholar]
- Shi, H.; Yu, Y.; Zhang, Y.; Feng, X.; Zhao, X.; Tan, H.; Khan, S.U.; Li, Y.; Wang, E. Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B Environ. 2018, 221, 280–289. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, G.; Jiang, Z. Advances in semiconductor photocatalysts and their modification. Adv. Environ. Sci. 1997, 5, 2–11. [Google Scholar]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Kukovecz, Á.; Kordás, K.; Kiss, J.; Kónya, Z. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surf. Sci. Rep. 2016, 71, 473–546. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, G.; Li, S. Advances in semiconductor photocatalytic decomposition of water. J. Mol. Catal. 2001, 15, 72–79. [Google Scholar]
- Hagfeldt, A.; Graetzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95, 49–68. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Arunachalam, P.; Nagai, K.; Amer, M.S.; Ghanem, M.A.; Ramalingam, R.J.; Al-Mayouf, A.M. Recent developments in the use of heterogeneous semiconductor photocatalyst based materials for a visible-light-induced water-splitting system—A brief review. Catalysts 2021, 11, 160. [Google Scholar] [CrossRef]
- Gopidas, K.R.; Bohorquez, M.; Kamat, P.V. Photophysical and photochemical aspects of coupled semiconductors: Charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J. Phys. Chem. 1990, 94, 6435–6440. [Google Scholar] [CrossRef]
- Brus, L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571. [Google Scholar] [CrossRef]
- Brus, L.E. Electron—electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, R.; Ellison, J.L.; Gibson, J.M.; Brus, L.E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 1984, 80, 4464. [Google Scholar] [CrossRef]
- Wang, C.M.; Heller, A.; Gerischer, H. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds. J. Am. Chem. Soc. 1992, 114, 5230–5234. [Google Scholar] [CrossRef]
- Escudero, J.; Cervera-March, S.; Gimenez, J.; Simarro, R. Physical characteristics of photocatalysts affecting the performance of a process in a continuous photoreactor. Sol. Energy Mater. 1988, 17, 151–163. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Lee, W.; Trehan, R.; Kershaw, R.; Dwight, K.; Wold, A. Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2. Mater. Res. Bull. 1991, 26, 1247–1254. [Google Scholar] [CrossRef]
- Kondo, M.M.; Jardim, W.F. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst. Water Res. 1991, 25, 823–827. [Google Scholar] [CrossRef]
- Rufus, I.B.; Ramakrishnan, V.; Viswanathan, B.; Kuriacose, J.C. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide. Langmuir 1990, 6, 565–567. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Milis, A.; Peral, J.; Domènech, X.; Navío, J. Heterogeneous photocatalytic oxidation of nitrite over iron-doped TiO2 samples. J. Mol. Catal. 1994, 87, 67–74. [Google Scholar] [CrossRef]
- Hong, A.P.; Bahnemann, D.W.; Hoffmann, M.R. Cobalt(II) tetrasulfophthalocyanine on titanium dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide. J. Phys. Chem. 1987, 91, 6245–6251. [Google Scholar] [CrossRef]
- Uchihara, T.; Matsumura, M.; Ono, J.; Tsubomura, H. Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide. J. Phys. Chem. 1990, 94, 415–418. [Google Scholar] [CrossRef]
- Han, N.C.; Cho, S.H.; Lee, W.Y. Electrogenerated chemiluminescence from tris(2,2 ’-bipyridyl)ruthenium(II) immobilized in titania-perfluorosulfonated lonomer composite films. Anal. Chem. 2003, 75, 4250–4256. [Google Scholar]
- Shi, H.; Li, N.; Sun, Z.; Wang, T.; Xu, L. Interface modification of titanium dioxide nanoparticles by titanium-substituted polyoxometalate doping for improvement of photoconductivity and gas sensing applications. J. Phys. Chem. Solids 2018, 120, 57–63. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Zhao, S.; Gong, Y.; Djellabi, R.; Lin, S.; Zhao, X. Highly-efficient photocatalytic hydrogen peroxide production over polyoxometalates covalently immobilized onto titanium dioxide. Appl. Catal. A Gen. 2020, 591, 117271. [Google Scholar] [CrossRef]
- Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2000, 30, 62–69. [Google Scholar] [CrossRef]
- Zouni, A.; Witt, H.-T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P.P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nat. Cell Biol. 2001, 409, 739–743. [Google Scholar]
- Sun, Z.; Chen, H.; Huang, Q.; Du, P. Enhanced photocatalytic hydrogen production in water under visible light using noble metal-free ferrous phosphide as an active cocatalyst. Catal. Sci. Technol. 2015, 5, 4964–4967. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Yue, Q.; Jia, H.; Du, P. Cadmium sulfide nanorods decorated with copper sulfide via one-step cation exchange approach for enhanced photocatalytic hydrogen evolution under visible light. ChemCatChem 2015, 8, 157–162. [Google Scholar] [CrossRef]
- Li, Y.; Yao, R.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Mimicking the catalytic center for the water-splitting reaction in photosystem II. Catalysts 2020, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-S.; Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Fountaine, K.T.; Lewerenz, H.J.; Atwater, H.A. Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 2016, 7, 13706. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.; Chang, J.A.; Kim, A.Y.; Choi, J.R.; Kim, K.; Lee, S.J. Heteropoly acid-incorporated TiO2Colloids as novel photocatalytic systems resembling the photosynthetic reaction center. J. Phys. Chem. B 2001, 105, 2539–2545. [Google Scholar] [CrossRef]
- Gu, C.; Shannon, C. Investigation of the photocatalytic activity of TiO2—polyoxometalate systems for the oxidation of methanol. J. Mol. Catal. A Chem. 2007, 262, 185–189. [Google Scholar] [CrossRef]
- Ciamician, G. The photochemistry of the future. Science 1912, 36, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nat. Cell Biol. 2001, 414, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Esswein, A.J.; Nocera, D.G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047. [Google Scholar] [CrossRef]
- Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar] [CrossRef]
- Anpo, M.; Kamat, P.V. Environmentally Benign Photocatalysts; Springer: New York, NY, USA, 2010. [Google Scholar]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Dolbecq, A.; Mialane, P.; Keita, B.; Nadjo, L. Polyoxometalate-based materials for efficient solar and visible light harvesting: Application to the photocatalytic degradation of azo dyes. J. Mater. Chem. 2012, 22, 24509–24521. [Google Scholar] [CrossRef]
- Sartorel, A.; Carraro, M.; Toma, F.M.; Prato, M.; Bonchio, M. Shaping the beating heart of artificial photosynthesis: Oxygenic metal oxide nano-clusters. Energy Environ. Sci. 2012, 5, 5592–5603. [Google Scholar] [CrossRef]
- Streb, C. New trends in polyoxometalate photoredox chemistry: From photosensitisation to water oxidation catalysis. Dalton Trans. 2011, 41, 1651–1659. [Google Scholar] [CrossRef]
- Sartorel, A.; Bonchio, M.; Campagna, S.; Scandola, F. Tetrametallic molecular catalysts for photochemical water oxidation. Chem. Soc. Rev. 2013, 42, 2262–2280. [Google Scholar] [CrossRef]
- Sarina, S.; Zhu, H.; Zheng, Z.; E Bottle, S.; Chang, J.; Ke, X.; Zhao, J.-C.; Huang, Y.; Sutrisno, A.; Willans, M.; et al. Driving selective aerobic oxidation of alkyl aromatics by sunlight on alcohol grafted metal hydroxides. Chem. Sci. 2012, 3, 2138–2146. [Google Scholar] [CrossRef]
- Hammarstr, L.; Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 2009, 42, 1859–1860. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [Green Version]
- Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2008, 38, 185–196. [Google Scholar] [CrossRef]
- Holger, D.; Ivelina, Z. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Cheminform 2010, 41, 1861–1870. [Google Scholar]
- Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 2015, 348, 690–693. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F. Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord. Chem. Rev. 2012, 256, 1115–1136. [Google Scholar] [CrossRef]
- Lv, H.; Geletii, Y.V.; Zhao, C.; Vickers, J.W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D.G.; Hill, C.L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589. [Google Scholar] [CrossRef] [PubMed]
- Puntoriero, F.; Sartorel, A.; Orlandi, M.; La Ganga, G.; Serroni, S.; Bonchio, M.; Scandola, F.; Campagna, S. Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord. Chem. Rev. 2011, 255, 2594–2601. [Google Scholar] [CrossRef]
- Romain, S.; Vigara, L.; Llobet, A. Oxygen—oxygen bond formation pathways promoted by ruthenium complexes. Accounts Chem. Res. 2009, 42, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Nam, D.H.; Lee, S.H.; Park, C.B. Biocatalytic photosynthesis with water as an electron donor. Chem. A Eur. J. 2014, 20, 12020–12025. [Google Scholar] [CrossRef]
- Singh, A.; Spiccia, L. Water oxidation catalysts based on abundant 1st row transition metals. Coord. Chem. Rev. 2013, 257, 2607–2622. [Google Scholar] [CrossRef]
- Tsai, M.K.; Rochford, J.; Polyansky, D.E.; Wada, T.; Tanaka, K.; Fujita, E.; Muckerman, J.T. Characterization of redox states of Ru(OH2)(Q)(tpy)2+ (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2′:6′,2″-terpyridine) and related species through experimental and theoretical studies. Inorg. Chem. 2009, 48, 4372–4383. [Google Scholar] [CrossRef]
- Stracke, J.J.; Finke, R.G. Distinguishing homogeneous from heterogeneous water oxidation catalysis when beginning with polyoxometalates. ACS Catal. 2014, 4, 909–933. [Google Scholar] [CrossRef]
- Orlandi, M.; Argazzi, R.; Sartorel, A.; Carraro, M.; Scorrano, G.; Bonchio, M.; Scandola, F. Ruthenium polyoxometalate water splitting catalyst: Very fast hole scavenging from photogenerated oxidants. Chem. Commun. 2010, 46, 3152–3154. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Peng, S.; Lu, G.; Li, S. Photosensitization of SiW11O398−-modified TiO2 by Eosin Y for stable visible-light H2 generation. Int. J. Hydrogen Energy 2013, 38, 11709–11719. [Google Scholar] [CrossRef]
- Han, Z.G.; Bond, A.M.; ZHAO, C. Recent trends in the use of polyoxometalate-based material for efficient water oxidation. Sci. China 2011, 54, 1877–1887. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Heydari-Soureshjani, E.; Rezaei, B. Nanostructure polyoxometalates containing Co, Ni, and Cu as powerful and stable catalysts for hydrogen evolution reaction in acidic and alkaline solutions. Int. J. Hydrog. Energy 2017, 42, 5026–5034. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yu, T.; Fu, Z.; Bi, L. A multilayer assembly of two mixed-valence Mn16-containing polyanions and study of their electrocatalytic activities towards water oxidation. Dalton Trans. 2018, 47, 7282–7289. [Google Scholar] [CrossRef]
- Xing, X.; Liu, R.; Yu, X.; Zhang, G.; Cao, H.; Yao, J.; Ren, B.; Jiang, Z.; Zhao, H. Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 2013, 1, 1488–1494. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Sun, Z.; Xu, L.; Song, Y.; Munventwali, A. Enhanced photocatalytic H2evolution on CdS with cobalt polyoxotungstosilic and MoS2/graphene as noble-metal-free dual co-catalysts. RSC Adv. 2015, 5, 47314–47318. [Google Scholar] [CrossRef]
- Bu, Y.; Zhang, Y.; Luo, X.; Li, F.; Liu, R.; Xu, L. Immobilizing CdS nanoparticles and MoS 2 /RGO on Zr-based metal—organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H 2 evolution. RSC Adv. 2016, 6, 40560–40566. [Google Scholar] [CrossRef]
- Zhai, X.-L.; Liu, J.; Hu, L.-Y.; Bao, J.-C.; Lan, Y.-Q. Polyoxometalate-decorated g-C3 N4 -wrapping snowflake-like CdS nanocrystal for enhanced photocatalytic hydrogen evolution. Chem. A Eur. J. 2018, 24, 15930–15936. [Google Scholar] [CrossRef]
- Lan, Q.; Zhang, Z.-M.; Qin, C.; Wang, X.-L.; Li, Y.-G.; Tan, H.-Q.; Wang, E.-B. Highly dispersed polyoxometalate-doped porous co3o4water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem. A Eur. J. 2016, 22, 15513–15520. [Google Scholar] [CrossRef]
- Maeda, K.; Wang, X.; Nishihara, Y. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 2009, 113, 4940–4947. [Google Scholar] [CrossRef]
- Yan, G.; Feng, X.; Xiao, L.; Xi, W.; Tan, H.; Shi, H.; Wang, Y.; Li, Y. Tuning of the photocatalytic performance of g-C3N4 by polyoxometalates under visible light. Dalton Trans. 2017, 46, 16019–16024. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Q.; Kurunthu, D.; Wu, T.; Zuo, F.; Zheng, S.-T.; Bardeen, C.J.; Bu, X.; Feng, P. synthesis and photocatalytic properties of a new heteropolyoxoniobate compound: K10[Nb2O2(H2O)2][SiNb12O40]·12H2O. J. Am. Chem. Soc. 2011, 133, 6934–6937. [Google Scholar] [CrossRef]
- Dong, Y.; Han, Q.; Ma, K.; Song, F.; Zheng, S.; Ding, Y. Study two kind different catalytic behaviors for K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]-cocatalyzed visible light driven water oxidation in pH 1–7 media. J. Catal. 2020, 392, 29–38. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, L.; Guo, W.; Xu, B.; Liu, S.; Li, F. Enhanced photoelectrochemical performance of nanocomposite film fabricated by self-assembly of titanium dioxide and polyoxometalates. J. Phys. Chem. C 2010, 114, 5211–5216. [Google Scholar] [CrossRef]
- Liu, R.; Sun, Z.; Song, X.; Zhang, Y.; Xu, L.; Xi, L. Toward non-precious nanocomposite photocatalyst: An efficient ternary photoanode TiO 2 nanotube/Co 9 S 8 /polyoxometalate for photoelectrochemical water splitting. Appl. Catal. A Gen. 2017, 544, 137–144. [Google Scholar] [CrossRef]
- Fuel Cell Technologies. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: Production Section. 2015. Available online: https://www.energy.gov/eere/fuelcells/downloads/fuelcell-technologies-office-multi-year-research-development-and-22 (accessed on 4 September 2020).
- Guo, Y.; Hu, C. Heterogeneous photocatalysis by solid polyoxometalates. J. Mol. Catal. A Chem. 2007, 262, 136–148. [Google Scholar] [CrossRef]
- Sivakumar, R.; Thomas, J.; Yoon, M. Polyoxometalate-based molecular/nano composites: Advances in environmental remediation by photocatalysis and biomimetic approaches to solar energy conversion. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 277–298. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Z.; Li, F.; Xu, L. Nanostructured polyoxometalate-modified SnO 2 photoanode with improved photoelectrochemical performance. Electrochem. Commun. 2014, 47, 45–48. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Z.; Shi, H.; Xu, L. Enhanced photovoltaic response of Cu2ZnSnS4 thin film by polyoxometalate doping for solar cell application. Thin Solid Films 2018, 664, 130–135. [Google Scholar] [CrossRef]
- Huang, B.; Hart, J.N. DFT study of various tungstates for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2020, 22, 1727–1737. [Google Scholar] [CrossRef]
- Luo, X.; Li, F.; Xu, B.; Sun, Z.; Xu, L. Enhanced photovoltaic response of the first polyoxometalate-modified zinc oxide photoanode for solar cell application. J. Mater. Chem. 2012, 22, 15050. [Google Scholar] [CrossRef]
- Xiang, X.; Fielden, J.; Rodríguez-Córdoba, W.; Huang, Z.; Zhang, N.; Luo, Z.; Musaev, D.G.; Lian, T.; Hill, C.L. electron transfer dynamics in semiconductor—chromophore—polyoxometalate catalyst photoanodes. J. Phys. Chem. C 2013, 117, 918–926. [Google Scholar] [CrossRef] [Green Version]
- Fielden, J.; Sumliner, J.M.; Han, N.; Geletii, Y.V.; Xiang, X.; Musaev, D.G.; Lian, T.; Hill, C.L. Water splitting with polyoxometalate-treated photoanodes: Enhancing performance through sensitizer design. Chem. Sci. 2015, 6, 5531–5543. [Google Scholar] [CrossRef] [Green Version]
- Lauinger, S.M.; Sumliner, J.M.; Yin, Q.; Xu, Z.; Liang, G.; Glass, E.N.; Lian, T.; Hill, C.L. High Stability of Immobilized Polyoxometalates on TiO2Nanoparticles and Nanoporous Films for Robust, Light-Induced Water Oxidation. Chem. Mater. 2015, 27, 5886–5891. [Google Scholar] [CrossRef]
- Ren, Z. Study of Functional Composites Based on Polyoxometalates and Graphene. Master Thesis, Northeast Normal University, Changchun, China, 2016. (In Chinese). [Google Scholar]
- Jeon, D.; Kim, H.; Lee, C.; Han, Y.; Gu, M.; Kim, B.-S.; Ryu, J. Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS Appl. Mater. Interfaces 2017, 9, 40151–40161. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D.-M. α-Fe 2 O 3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Q.; Yu, F.; Wu, J.; Liu, Z.; Peng, B. Cobalt substituted polyoxophosphomolybdate modified TiO2 for boosted photoelectrocatalytic water oxidation. J. Alloy. Compd. 2021, 854, 157232. [Google Scholar] [CrossRef]
- Xi, L.; Jin, Z.; Sun, Z.; Liu, R.; Xu, L. Enhanced photoelectrocatalytic performance for water oxidation by polyoxometalate molecular doping in BiVO 4 photoanodes. Appl. Catal. A Gen. 2017, 536, 67–74. [Google Scholar] [CrossRef]
- Kim, H.; Bae, S.; Jeon, D.; Ryu, J. Fully solution-processable Cu2O—BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem. 2018, 20, 3732–3742. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Jeon, D.; Ryu, J. Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO4 Photoanodes. ACS Appl. Mater. Interfaces 2019, 11, 7990–7999. [Google Scholar] [CrossRef]
- Fan, K.; Chen, H.; He, B.; Yu, J. Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4. Chem. Eng. J. 2020, 392, 123744. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, N.; Bae, S.; Han, Y.; Ryu, J. WO3/Conducting Polymer Heterojunction Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 8036–8044. [Google Scholar] [CrossRef]
- Tourneur, J.; Fabre, B.; Loget, G.; Vacher, A.; Mériadec, C.; Ababou-Girard, S.; Gouttefangeas, F.; Joanny, L.; Cadot, E.; Haouas, M.; et al. Molecular and material engineering of photocathodes derivatized with polyoxometalate-supported {Mo3S4} HER catalysts. J. Am. Chem. Soc. 2019, 141, 11954–11962. [Google Scholar] [CrossRef]
- Bao, Y.-Y.; Bi, L.-H.; Wu, L.-X. One-step synthesis and stabilization of gold nanoparticles and multilayer film assembly. J. Solid State Chem. 2011, 184, 546–556. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; You, W.; Liu, M.; Zhang, L.; Sang, X. Catalytic effects of [Ag(H2O)(H3PW11O39)]3− on a TiO2 anode for water oxidation. Chin. J. Catal. 2018, 39, 534–541. [Google Scholar] [CrossRef]
No. | Cocatalyst | Solution/pH | Ratio (wt %) | Light Source | H2 (O2) Evolution Efficiency/TOF | References |
---|---|---|---|---|---|---|
1 | Ru4SiW10/TiO2 | - | - | Osram XBO150W/1 OFR xenon lamp Excitation, 532 nm, FWHM 8 ns | - | Orlandi et al. (2010) [81] |
2 | K10[Nb2O2(H2O)2][SiNb12O40]·12H2O/NiO | pure water (pH 7) | 99.5:0.5 | Xe lamp of (300W) | 222 (H2)/ 97 (O2) μmol h−1 g−1 | Zhang et al. (2011) [93] |
3 | CdS QDs/PW12/Au NPs | 0.1 M Na2S and 0.1 M Na2SO3 aqueous solution | 94:6 | Xenon lamp (500 W) (λ> 420 nm) | ca.550(H2) μmol h−1 g−1 | Xing et al. (2013) [86] |
4 | SiW11/TiO2/EY/Pt | pH 7 | - | Hg lamp (400 W) (λ> 420 nm) | 65.2 mmol h-1 average apparent quantum yield 11.4% | Liu et al. (2013) [82] |
5 | SiW11Co/CdS/MoS2/graphene | 30 vol% lactic acid aqueous solution | 1:94:5 | Xe lamp (300 W) (λ> 400 nm) | 1.7 mmol h−1 | Liu et al. (2015) [87] |
6 | PW12/(Co3O4)12 | Na2SiF6/NaHCO3 buffer solution/pH 6.0 | - | 300 W Xe lamp equipped with a long-pass filter (420 nm cutoff) | TOF1.11*10-3·s−1 | Lan et al. (2016) [90] |
7 | SiW12@UiO-67/M/G-CdS | 30 vol% lactic acid aqueous solution | 30:65:5 | 300 W Xe lamp (λ> 400 nm) | 1.27 mmol·h−1 | Bu et al. (2016) [88] |
8 | SiW12/C3N4 | 1.0 wt% Pt (H2PtCl6) triethanolamine (30 mL) and deionized water (90 mL) | - | 300 W Xe lamp (λ> 400 nm) | 484 µmol 1 h−1 g−1 | Yan et al. (2017) [92] |
9 | Ni4(PW9)2/g-C3N4/PPy/CdS | 0.35 M Na2SO3 and 0.25 M Na2S aqueous solution | - | 300 W xenon arc lamp (λ = 420 ~ 800 nm) | 1.321mmol·h−1 | Lan et al. (2018) [89] |
10 | K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]15H2O /BiVO4/NaIO3 | sodium acetate and acetic acid (100 mM)/pH 4.0 | - | LED light source 100 mW cm−2 (λ = 420 nm) | (O2) ca.10 µmol 1 h−1 | Dong et al. (2020) [94] |
No. | Cocatalyst | Working Electrode | Electrolytes | Modification Methods | Light Source | Onset Potential (V vs. RHE) | Current Density (mA cm-2) E=1.23V vs. RHE | The Reference(Year) |
---|---|---|---|---|---|---|---|---|
1 | TiO2/PW12 TiO2/P2Mo18 (methanol) | ITO | 0.1M Na2SO4 | LBL | 6 W UV lamp (365 nm) 105 µW·cm−2 | - | - | Sun et al. [95] (2010) |
2 | TiO2/Ru4PW10 TiO2/Ru4SiW10 | FTO | 0.1 M KNO3 (pH 10) | Silanization | 150 W Xe (130 mW power at the quartz window). | - | ca. 1.2 | Lauinger et al. [106] (2015) |
3 | BiVO4/PW12 BiVO4/CoW12 | FTO | 0.1M Na2SO4 (pH 5.9) | Doctor blade technique | 400 W Xe lamp (λ> 400 nm, 100 mW/cm−2 | - | 0.202 (1.2V vs. SCE) | Xi et al. [111] (2017) |
4 | TNAs/Co9S8/PW12 | Ti foil | 0.5 M Na2SO4 | Ionic layer adsorption and reaction (SILAR) | 300 W Xe (100 mW cm−2) | 1.12 | Liu et al. [96] (2017) | |
5 | Fe2O3/b-PEI/Co4PW9 TiO2/b-PEI/Co4PW9 BiVO4/b-PEI/Co4PW9 | FTO | 80 mM phosphate buffer (pH 8.0) | LBL | 300 W Xe (100 mW cm−2) | 0.68 0.48 −0.23 | 0.94 1.96 0.105 | Jeon et al. [108 (2017) |
6 | TiO2/AgPW11 | ITO | 0.1M Na2SO4 pH 6 | - | (100 mW cm−2) | - | 1.0 (1.5 V vs. Ag/AgCl) | You et al. [118 (2018) |
7 | WO3/PPy/Ru4POM | FTO | 0.1M HCl pH 1.0 | Hydrothermal method and codeposition | 300 W Xe (100 mW cm−2) | 0.72 | 2.5 | Jeon et al. [115] (2018) |
8 | SimPy/[117] | SimPy | 1.0 M H2SO4 (pH 0.3) | Drop-casting and electrostatic incorporated | AM 1.5G, 100 mW cm−2 | 0.33 | - | Tourneur et al. [116] (2019) |
9 | BiVO4-N/C-CoPOM | FTO | A 0.5 M phosphate buffer solution (pH 7) with/without 1 M Na2SO3 | Electrodeposition and electrostatic interactions | A 300 W Xenon lamp with an AM 1.5G filter (100 mW cm−2) | 0.26 V | 3.30 | Fan et al. [114 (2020) |
10 | Co4PW9/TiO2 NRs | FTO | 0.5 M Na2SO4 aqueous solution (pH 7.4) | Hydrothermal method and ultrasonic reflux | A 300 W Xenon lamp with an AM 1.5G filter (100 mW cm−2) | 0.41 | 0.42 | Yang et al. [110] 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Bi, L. Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites. Catalysts 2021, 11, 524. https://doi.org/10.3390/catal11040524
Wu Y, Bi L. Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites. Catalysts. 2021; 11(4):524. https://doi.org/10.3390/catal11040524
Chicago/Turabian StyleWu, Yue, and Lihua Bi. 2021. "Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites" Catalysts 11, no. 4: 524. https://doi.org/10.3390/catal11040524