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Abstract: Ginsenoside Rg3 is a bioactive compound from Panax ginseng and exhibits diverse notable 
biological properties. Glycosylation catalyzed by uridine diphosphate-dependent 
glycosyltransferase (UGT) is the final biosynthetic step of ginsenoside Rg3 and determines its 
diverse pharmacological activities. In the present study, promiscuous UGT Bs-YjiC from Bacillus 
subtilis 168 was expressed in Escherichia coli and purified via one-step nickel chelate affinity 
chromatography. The in vitro glycosylation reaction demonstrated Bs-Yjic could selectively 
glycosylate the C12 hydroxyl group of ginsenoside Rg3 to synthesize an unnatural ginsenoside 
Rd12. Ginsenoside Rd12 was about 40-fold more water-soluble than that of ginsenoside Rg3 (90 
μM). Furthermore, in vitro cytotoxicity of ginsenoside Rd12 against diverse cancer cells was much 
stronger than that of ginsenoside Rg3. Our studies report the UGT-catalyzed synthesis of unnatural 
ginsenoside Rd12 for the first time. Ginsenoside Rd12 with antiproliferative activity might be 
further exploited as a potential anticancer drug. 

Keywords: ginsenoside Rg3; unnatural ginsenoside; glycosyltransferase; water solubility; 
antiproliferative activity 

 

1. Introduction 

Ginseng (Panax ginseng) is the most famous medicinal-edible plant recorded in the Chinese 
Pharmacopoeia [1,2]. This precious perennial herb is crowned the “King of All Herbs” [3]. Ginseng 
has been widely used to provide nutrition, strengthen immunity, and increase vital energy for 
thousands of years in Oriental countries [4]. Ginsenosides are the principal effective ingredients of 
ginseng [5]. These natural compounds are a group of glycosylated triterpene saponins and exhibit 
diverse intriguing pharmacological activities, including anti-inflammatory, antiaging, anticancer, 
antitumor, neuroprotective, skin-whitening, and immunoregulatory effects [6–9]. 

Over 140 ginsenosides have been isolated from diverse Panax species [10]. These naturally 
occurring products are mainly grouped into protopanaxadiol-type (PPD) and protopanaxatriol-type 
(PPT) according to the structure of the aglycone skeleton [11]. Glycosylation catalyzed by uridine 
diphosphate-dependent glycosyltransferase (UGT) is the last biosynthetic step of ginsenosides and 
determines their tremendous structural and functional diversity [12]. PPD contains hydroxyl groups 
at C3, C12, and C20 positions, whereas PPT contains hydroxyl groups at C3, C6, C12, and C20 
positions. For PPD-type ginsenosides, the sugar moieties are attached to the C3 and/or C20 hydroxyl 
groups. For PPT-type ginsenosides, the sugar moieties are attached to the C6 and/or C20 hydroxyl 
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groups. Despite both PPD and PPT skeletons containing the C12 hydroxyl group, ginsenosides with 
sugar moieties attached to the C12 hydroxyl group have never been identified from Panax species. 

Compared with plant-derived UGTs, microbial UGTs generally exhibit remarkable aglycone 
flexibility and poor regiospecificity [13–18]. These promiscuous UGTs could be exploited as robust 
biocatalysts for glycodiversification of natural and unnatural products for new drug discovery 
[19,20]. Bs-YjiC from Bacillus subtilis 168 is a flexible and effective UGT toward a numerous number 
of structurally diverse compounds [21,22]. Bs-YjiC could glucosylate the C3, C6, and C12 hydroxyl 
groups of PPT to synthesize unnatural ginsenosides [10]. Bs-YjiC could also catalyze a continuous 
two-step glucosylation of the C3 and C12 hydroxyl groups of PPD to synthesize ginsenoside Rh2 and 
an unnatural ginsenoside F12 [23]. However, the regiospecificity of Bs-YjiC toward other 
ginsenosides have not been thoroughly elucidated. 

In the present study, Bs-YjiC was heterologously expressed in Escherichia coli and purified to 
homogeneity via one-step nickel chelate affinity chromatography. Ginsenoside Rg3 (a PPD-type 
ginsenoside) was selected as the aglycone using uridine diphosphate glucose (UDPG) as the glucosy 
donor (Figure 1). Furthermore, water solubility and antiproliferative activity of the synthesized 
unnatural ginsenoside toward diverse cancer cell lines were also determined. 

 
Figure 1. Chemical structures of ginsenosides Rg3 and Rd12. 

2. Results and Discussion 

2.1. Expression and Purification of Bs-YjiC 

Bs-YjiC was cloned from B. subtilis 168 and heterologously expressed in E. coli BL21 (DE3) as an 
N-terminal His6-tagged protein. Recombinant Bs-YjiC was mainly expressed as a soluble protein and 
could be purified easily by one-step nickel chelate affinity chromatography. SDS-PAGE analysis 
indicated a clear band at around 45 kDa (over 90% purity), which was consistent with the calculated 
molecular weight of the recombinant Bs-YjiC (Figure 2). 

 
Figure 2. SDS-PAGE analysis of purified Bs-YjiC. M: Protein marker; 1: Purified Bs-YjiC. 
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2.2. Glycosylation of Ginsenoside Rg3 with Bs-YjiC 

Glycosyltransferase activity of Bs-YjiC toward ginsenoside Rg3 was determined with UDPG as 
the glucosyl donor. High-performance liquid chromatography (HPLC) analysis of the Bs-YjiC-
catalyzed reaction mixtures revealed that only one new product with the retention time (RT) of 13.1 
min was produced, whereas no new product was detected in the control reactant (Figure 3A). 
Further, HPLC coupled with ionization-mass spectrometry (HPLC-ESI-MS) analysis of the new 
product ([M+H]+ m/z+~947.5585, [M+H-H2O]+ m/z+~929.5475, [M+H-Glc-H2O]+ m/z+~767.4908, [M+H-
2Glc-H2O]+ m/z+~605.4396, and [M+H-3Glc-2H2O]+ m/z+~425.3783) demonstrated one glucosyl moiety 
was attached to ginsenoside Rg3 (calculated molecular weight, [M+H]+ m/z+~785.5061) (Figure 3B). 

 
Figure 3. HPLC-ESI-MS analysis of the reactants of ginsenoside Rg3. (A) HPLC chromatograms of the 
reaction mixtures. (B) MS spectra for ginsenoside Rd12. 

The newly synthesized product was purified by preparative HPLC and its structure was 
elucidated by nuclear magnetic resonance (NMR) spectroscopy, including 1H NMR, 13C NMR, 
homonuclear correlation spectroscopy (COSY), heteronuclear multiple-bond correlation 
spectroscopy (HMBC), and heteronuclear singular quantum correlation (HSQC) (Figures S1–S5). The 
1H and 13C NMR spectra of the new product was similar to that of ginsenoside Rg3 [24], except for an 
additional glucosyl moiety (Table 1). Three anomeric proton signals (δH 4.4–4.7 ppm) in 1H NMR 
spectra and three anomeric carbon signals (δC 100.5–105.4 ppm) in the 13C NMR spectra suggested 
that the PPD skeleton was decorated with three glucosyl moieties. The significant downfield shift at 
δC 79.39 (∼9 ppm, C12, ′glycosylation shift’), as well as the correlations between the glucosyl moiety 
anomeric signal H′′′ (δH 4.53 ppm, d, J = 8.0 Hz) and C12 (δC 79.39 ppm) in the HMBC spectra, revealed 
that the C12 hydroxyl group of ginsenoside Rg3 was decorated with a glucosyl moiety [22]. In 
addition, the anomeric proton-coupling constant (J= 8.0 Hz) indicated that the C12 glucosyl moiety 
of ginsenoside Rg3 adopted the β-configuration, which was in agreement with the inverting 
mechanism of UGTs [25]. Thus, this ginsenoside Rg3-derived unnatural product was 3-O-β-D-
glucopyranosyl-(1-2)-O-β-D-glucopyranosyl-12-O-β-D-glucopyranosyl-protopanaxadiol (an 
unnatural PPD-type ginsenoside named ginsenoside Rd12 in this study). 

Kinetic analysis of Bs-YjiC toward ginsenoside Rg3 revealed that the Km value was 99.0 μM, 
which was comparable to many previously reported UGTs involved in the biosynthesis of different 
triterpene saponins [13,25,26]. The turnover number (kcat) of Bs-YjiC was 5.2 s−1, which was much 
higher than that of ginseng-derived UGTs (Figure S6) [11,27]. Thus, the catalytic efficiency (kcat/Km, 
5.3×104 s−1 M−1) of Bs-YjiC toward ginsenoside Rg3 was considerably high. These results suggested 
that Bs-YjiC was an effective UGT for enzymatic glycosylation of ginsenoside Rg3. Glycosylation 
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mediated by UGTs is the final biosynthetic step and the key bottleneck of ginsenosides [24]. A chassis 
cell that can accumulate considerable number of ginsenoside Rg3 has been constructed [24,28], it 
would be of great interest to produce unnatural ginsenoside Rd12 by introduction of Bs-YjiC into the 
ginsenoside Rg3-producing yeast cell factories. 

Table 1. 1H- and 13C-NMR spectral of unnatural ginsenoside Rd12 (methanol-d4, 600 MHz). 

C δC (ppm) δH (ppm) 
1 36.69 1.44 (1H, m), 1.59 (1H, m) 
2 27.61 1.37 (1H, m), 1.67 (1H, m) 
3 91.26 3.23 (1H, br.s) 
4 40.56 - 
5 57.48 0.79 (1H, m) 
6 19.19 1.41 (1H, m), 1.47 (1H, m) 
7 36.69 1.36 (1H, m), 1.47 (1H, m) 
8 38.12 - 
9 53.15 1.69 (1H, overlapped) 

10 41.94 - 
11 31.86 1.80 (1H, m), 2.04 (1H, m) 
12 79.39 3.92 (1H, m) 
13 47.30 1.10 (1H, m) 
14 54.96 - 
15 28.65 1.26 (1H, m), 1.38 (1H, m) 
16 28.36 1.43 (1H, m), 2.03 (1H, m) 
17 51.14 - 
18 17.44 0.98 (3H, s) 
19 16.74 0.96 (3H, s) 
20 74.72 - 
21 26.21 1.15 (3H, s) 
22 35.75 1.32 (2H, m) 
23 23.28 1.18 (2H, m), 1.67 (1H, m) 
24 126.30 5.17 (1H, tr) 
25 131.80 - 
26 25.92 1.71 (3H, s) 
27 17.77 1.65 (3H, s) 
28 27.61 1.10 (3H, s) 
29 16.71 0.89 (3H, s) 
30 16.21 1.07 (3H, s) 

C3-O-inner-Glc-1' 105.38 4.47 (1H, d, J = 8.0 Hz) 
2' 81.11 3.60 (m) 
3' 77.59 3.38 (1H, overlapped) 
4' 71.55 3.13 (1H, overlapped) 
5' 78.26 3.27 (1H, m) 
6' 62.82 3.69 (1H, dd, J = 7.8, 4.2 Hz); 3.86 (1H, overlapped) 

C3-O-outer-Glc-1'' 104.50 4.70 (1H, d, J = 8.0 Hz) 
2'' 76.27 3.14 (m) 
3'' 77.81 3.38 (1H, overlapped) 
4'' 70.92 3.36 (1H, overlapped) 
5'' 78.33 3.24 (1H, m) 
6'' 62.36 3.69 (1H, dd, J = 7.8, 4.2 Hz); 3.86 (1H, overlapped) 

C12-O-inner-Glc-1''' 100.53 4.53 (1H, d, J = 8.0 Hz) 
2''' 75.08 3.13 (m) 
3''' 77.96 3.14 (1H, overlapped) 
4''' 71.86 3.20 (1H, overlapped) 
5''' 78.44 3.60 (1H, m) 
6''' 63.08 3.67 (1H, dd, J = 8.4, 3.0 Hz); 3.81 (1H, overlapped) 

Note: Glc: Glucosyl moiety; ppm: Parts per million. 
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2.3. Aqueous Solubility of Ginsenoside Rd12 

The poor aqueous solubility of natural products resulted in a low absorption and a short 
retention time in the intestine [21]. Glycosylation mediated by UGTs transfers the hydrophilic sugar 
moieties to natural products, which can significantly enhance their solubility and thus improve their 
bioavailability and pharmacodynamics [29,30]. The aqueous solubility of ginsenoside Rg3 was 
limited to 90 μM. However, the aqueous solubility of unnatural ginsenoside Rd12 increased to 3.6 
mM, which was 40-fold more water-soluble than that of ginsenoside Rg3. 

2.4. In Vitro Cytotoxicity of Ginsenoside Rd12  

Glycosylation contributes to the tremendous structural and functional diversity of ginsenosides 
[10]. Thus, the antiproliferative activity of unnatural ginsenoside R12 toward colon cancer cells Lovo, 
gastric cancer cell line SNU719, and lung cancer cell line DMS53 was evaluated using ginsenoside 
Rg3 as the positive control. Ginsenoside Rg3 exhibited poor inhibition toward colon cancer cells Lovo 
and lung cancer cells DMS53 with IC50 values exceeding 400 μM, whereas IC50 values of unnatural 
ginsenoside Rd12 toward colon cancer cells Lovo and lung cancer cells DMS53 were 40.7 and 46.4 
μM, respectively (Table 2). The IC50 values of ginsenosides Rg3 and Rd12 toward gastric cancer cell 
SNU719 cells were 359.4 and 112.2 μM, respectively. These results suggested that the attachment of 
a glucosyl moiety to the C12 hydroxyl group of ginsenoside Rd12 enhanced its antiproliferative 
activity toward colon cancer cells Lovo, gastric cancer cell line SNU719, and lung cancer cell line 
DMS5. 

Table 2. In vitro cytotoxicity of ginsenoside Rd12 (μM) 

Compound Lovo 1 DMS53 2 SNU719 3 
Rg3 >400 >400 359.4 ± 30.1 

Rd12 40.7 ± 5.9 46.4 ± 4.1 112.2 ± 11.9 
1 Lovo: Colon cancer cells; 2 DMS53: Lung cancer cells; 3 SNU719: Gastric carcinoma cells. 

3. Materials and Methods 

3.1.  Chemicals, Reagents, and Cancer Cell Lines 

Ginsenoside Rg3 was purchased from Biopurify Phytochemicals (Chengdu, Sichuan, China). 
UDP-glucose (UDPG), dimethyl sulfoxide (DMSO), methanol, deuterated methanol (methanol-d4), 
acetonitrile, and thiazolyl blue tetrazolium bromide (MTT) agent were obtained from Sigma-Aldrich 
(St. Louis, MO, USA). The colon cancer cells Lovo, lung cancer cells DMS53, and gastric cancer cells 
SNU719 were obtained from CoBioer Biosciences (Nanjing, China). Dulbecco’s modified Eagle’s 
medium, streptomycin, and penicillin were obtained from Gibco (Haverhill, MA, USA). 

3.2. Heterologous Expression and Enzymatic Activity of Bs-YjiC 

Bs-YjiC (GenBank No. NP_389104) was subcloned into plasmid pET28a and recombinant Bs-
YjiC was prepared as described previously [10]. Enzymatic assay (0.5 mL) of Bs-YjiC was conducted 
with 50 mM Tris-HCl (pH 8.0), 10 mM UDPG, 2 mM ginsenoside Rg3, and 5 μg Bs-YjiC at 40 °C for 
10 min. Reactants adding total lysate protein from E. coli BL21 (DE3) expressing pET28a was used as 
the control. The reaction mixtures were quenched by the addition of equal volume of 
chromatographic-grade methanol. After centrifugation at 12,000 g for 5 min, the reactants were 
monitored by HPLC and HPLC-ESI-MS as described previously [24]. 

3.3. Kinetic Parameters of Bs-YjiC toward Ginsenoside Rg3 

Kinetic studies of Bs-YjiC toward ginsenoside Rg3 were carried out in 300 μL volumes (50 mM 
Tris-HCl (pH 8.0), 10 mM UDPG, and a variable concentration of ginsenoside Rg3 [50–600 μM]). The 
reactants were precultured at 40 °C for 20 min and initiated by the addition of 0.5 μg Bs-YjiC. 
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Subsequently, the reaction mixtures were incubated at 40 °C for 10 min and stopped by the addition 
of equal volume of chromatography-grade methanol. Finally, the samples were analyzed by HPLC 
as described above. 

3.4. Water Solubility Determination 

Water solubility of ginsenosides Rd12 and Rg3 was determined as described previously [31]. An 
amount of 5 mg ginsenosides Rd12 and Rg3 were dissolved in 0.4 mL double-distilled water, 
respectively. The samples were mixed by ultrasonication for 1 h. Subsequently, the samples were 
maintained at 25 °C for 2 h. After centrifugation at 15,000 g for 10 min, the aliquots were analyzed 
directly by HPLC mentioned above. 

3.5. Cell Viability Assay 

Antiproliferative activity of ginsenosides Rd12 and Rg3 against colon cancer cells Lovo, gastric 
cancer cell line SNU719, and lung cancer cell line DMS5 was performed as described previously [23]. 
The cancer cells were seeded into the 96-well plates with a density of 1 × 105 cells/mL and incubated 
for 24 h. Subsequently, the cancer cell lines were incubated with variable concentrations of 
ginsenosides Rd12 and Rg3 for another 48 h. MTT solution (15 μL, 5 mg/mL) was added to the wells 
and the cancer cell lines were incubated for 4 h. Finally, the medium was removed and DMSO (150 
μL) was added into the plates. The samples were measured spectrophotometrically by an ELISA 
spectrophotometer at 570 nm. 

3.6. HPLC and HPLC-ESI-MS Analysis of the Glycosylated Product 

An Agilent 1260 HPLC system equipped with a C18 column was applied to analyze the samples 
as described previously [23]. The column was eluted with phase A (double-distilled water/0.1% 
formic acid, v/v) and phase B (chromatography-grade acetonitrile/0.1% formic acid, v/v). The flow 
rate was 1 mL/min with a gradient program of 25–85% B in 0–25 min. HPLC-ESI-MS analysis was 
operated in positive ion mode and full scan (50–1500 Da) as described previously [25]. 

3.7. Structural Elucidation of Ginsenoside Rd12 by NMR Spectroscopy 

A scale-up reaction (100 mL) was conducted for the preparation of unnatural ginsenoside Rd12. 
Ginsenoside Rd12 was purified by an Agilent 1260 preparative HPLC system as described previously 
[23]. The preparative column was eluted with double-distilled water (phase A) and chromatography-
grade methanol (phase B) using a flow rate of 10 mL/min and a gradient of 25–100% phase B in 0–60 
min. Subsequently, the fractions containing purified ginsenoside Rd12 were collected and 
concentrated by reduced pressure distillation. After vacuum freeze drying, ginsenoside Rd12 
powders were dissolved in deuterated methanol. 1D NMR and 2D NMR spectroscopies of 
ginsenoside Rd12 were recorded on an Advance DMX-600 NMR spectrometer (Bruker, Karlsruhe, 
Germany). 

4. Conclusions 

In summary, Bs-YjiC from B. subtilis 168 was demonstrated to be a robust UGT, which can 
effectively and selectively glucosylate the C12 hydroxyl group of ginsenoside Rg3 to synthesize an 
unnatural ginsenoside Rd12 for the first time. Our studies revealed that unnatural ginsenoside Rd12 
exhibited better solubility and stronger cytotoxicity against diverse cancer cell lines than those of 
ginsenoside Rg3. The in vivo and in vitro pharmacological activities of unnatural ginsenoside Rd12 
should be further investigated. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1, 1H NMR of 
ginsenoside Rd12; Figure S2, 13C NMR of ginsenoside Rd12; Figure S3, HMBC spectra of ginsenoside Rd12; 
Figure S4, HSQC spectra of ginsenoside Rd12; Figure S5, COSY spectra of ginsenoside Rd12; Figure S6, Kinetic 
analysis of Bs-YjiC toward ginsenoside Rg3. 

http://www.mdpi.com/xxx/s1.%20Figure%20S1
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