Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of Au NPs modified TiO2 NFs
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Photo-Electrochemical hydrogen generation from water using solar energy. Materials-Related aspects. Int. J. Hydrog. Energy 2002, 27, 991–1022. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R.C.; Qian, F.; Zhang, J.Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Hieu, H.N.; Dung, N.Q.; Kim, J.; Kim, D. Urchin-like nanowire array: A strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry. Nanoscale 2013, 5, 5530–5538. [Google Scholar] [CrossRef]
- Tilley, S.D.; Cornuz, M.; Sivula, K.; Gratzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 2010, 49, 6405–6408. [Google Scholar] [CrossRef]
- Kay, A.; Cesar, I.; Gratzel, M. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721. [Google Scholar] [CrossRef]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically aligned WO(3) nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208. [Google Scholar] [CrossRef]
- Goncalves, R.H.; Leite, L.D.; Leite, E.R. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting. ChemSusChem 2012, 5, 2341–2347. [Google Scholar] [CrossRef]
- Baker, D.R.; Kamat, P.V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Adv. Funct. Mater. 2009, 19, 805–811. [Google Scholar] [CrossRef]
- Yan, J.; Ye, Q.; Wang, X.; Yu, B.; Zhou, F. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale 2012, 4, 2109–2116. [Google Scholar] [CrossRef]
- Khan, S.U.; Al-Shahry, M.; Ingler, W.B., Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef] [PubMed]
- Hoang, S.; Guo, S.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Sui, R.; Rizkalla, A.S.; Charpentier, P.A. Formation of titania nanofibers: A direct sol-gel route in supercritical CO2. Langmuir 2005, 21, 6150–6153. [Google Scholar] [CrossRef] [PubMed]
- Caratão, B.; Carneiro, E.; Sá, P.; Almeida, B.; Carvalho, S. Properties of Electrospun TiO2 Nanofibers. J. Nanotechnol. 2014, 472132. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Lee, H.C.; Chen, C.C.; Wu, Y.H.; Hsu, Y.M.; Chang, Y.P.; Yang, T.I.; Fang, H.W. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells. J. Biomed. Mater. Res. A 2012, 100, 1687–1695. [Google Scholar] [CrossRef]
- Tavangar, A.; Tan, B.; Venkatakrishnan, K. Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air. J. Appl. Phys. 2013, 113, 023102. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhong, M.; Xu, H.; Huang, H.; Shen, H. In situ controlled synthesis of various TiO2 nanostructured materials via a facile hydrothermal route. J. Nanopart. Res. 2011, 13, 1855–1863. [Google Scholar] [CrossRef]
- Biernat, K.; Malinowski, A.; Gnat, M. The possibility of future biofuels production using ưaste carbon dioxide and solar energy. In Biofuels—Economy, Environment and Sustainability Figure; InTech: Rijeka, Croatia, 2013; pp. 123–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhu, R.; Ke, L.; Liu, X.; Liu, B.; Ramakrishna, S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small 2010, 6, 2176–2182. [Google Scholar] [CrossRef]
- Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-Doped TiO2 Composite Thin Films Photocatalyst. Int. J. Hydrog. Energy 2009, 34, 5337–5346. [Google Scholar] [CrossRef]
- Wang, H.; You, T.; Shi, W.; Li, J.; Guo, L. Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. J. Phys. Chem. C 2012, 116, 6490–6494. [Google Scholar] [CrossRef]
- Fang, J.; Xu, L.; Zhang, Z.; Yuan, Y.; Cao, S.; Wang, Z.; Yin, L.; Liao, Y.; Xue, C. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. ACS Appl. Mater. Interfaces 2013, 5, 8088–8092. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, H.; Zhang, C.; Fu, L.; Li, G.; Shao, Z.; Yi, B. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods. Int. J. Hydrog. Energy 2013, 38, 13023–13030. [Google Scholar] [CrossRef]
- Reichert, R.; Jusys, Z.; Behm, R.J. Au/TiO2 Photo(electro)catalysis: The Role of the Au Cocatalyst in Photoelectrochemical Water Splitting and Photocatalytic H2 Evolution. J. Phys. Chem. C 2015, 119, 24750–24759. [Google Scholar] [CrossRef]
- Su, F.; Wang, T.; Lv, R.; Zhang, J.; Zhang, P.; Lu, J.; Gong, J. Dendritic Au/TiO(2) nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale 2013, 5, 9001–9009. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, B.; Nie, S.; Shao, L.; Hu, L. Optimization of plasmon-induced photocatalysis in electrospun Au/CeO2 hybrid nanofibers for selective oxidation of benzyl alcohol. J. Catal. 2017, 348, 256–264. [Google Scholar] [CrossRef]
- Luo, J.; Chen, J.; Wang, H.; Liu, H. Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting. J. Power Sources 2016, 303, 287–293. [Google Scholar] [CrossRef]
- Xu, F.; Mei, J.; Zheng, M.; Bai, D.; Wu, D.; Gao, Z.; Jiang, K. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. J. Alloys Compd. 2017, 693, 1124–1132. [Google Scholar] [CrossRef]
- Agnieszka, A.; Malcolm, Z.; Erik, P.; Forbes, C.; Van Der Hoek, B.; Giles, D.; Tanya, A.; Heike, M. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sens. Actuators B Chem. 2016, 227, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Raval, D.; Jani, M.; Chaliyawala, H.; Joshi, A.; Mukhopadhyay, I.; Ray, A. Solar to chemical energy conversion using titania nanorod photoanodes augmented by size distribution of plasmonic Au-nanoparticle. Mater. Chem. Phys. 2019, 231, 322–334. [Google Scholar] [CrossRef]
- Duan, Y.; Zhou, S.; Chen, Z.; Luo, J.; Zhang, M.; Wang, F.; Xu, T.; Wang, C. Hierarchical TiO2 nanowires/microflowers photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting. Catal. Sci. Technol. 2018, 8, 1395–1403. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Doan, M.T.; Nguyen, M.V. Photoelectrochemical water splitting properties of CdS/TiO2 nanofibers-based photoanode. J. Mater. Sci. Mater. Electron. 2019, 30, 926–932. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.N.; Nguyen, M.V.; Nguyen, T.H.T.; Doan, M.T.; Ngoc, L.L.T.; Janssens, E.; Yadav, A.; Lin, P.-C.; Nguyen, M.S.; Hoang, N.H. Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting. Catalysts 2020, 10, 261. https://doi.org/10.3390/catal10020261
Nguyen VN, Nguyen MV, Nguyen THT, Doan MT, Ngoc LLT, Janssens E, Yadav A, Lin P-C, Nguyen MS, Hoang NH. Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting. Catalysts. 2020; 10(2):261. https://doi.org/10.3390/catal10020261
Chicago/Turabian StyleNguyen, Van Nghia, Minh Vuong Nguyen, Thi Hong Trang Nguyen, Minh Thuy Doan, Loan Le Thi Ngoc, Ewald Janssens, Anupam Yadav, Pin-Cheng Lin, Manh Son Nguyen, and Nhat Hieu Hoang. 2020. "Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting" Catalysts 10, no. 2: 261. https://doi.org/10.3390/catal10020261
APA StyleNguyen, V. N., Nguyen, M. V., Nguyen, T. H. T., Doan, M. T., Ngoc, L. L. T., Janssens, E., Yadav, A., Lin, P.-C., Nguyen, M. S., & Hoang, N. H. (2020). Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting. Catalysts, 10(2), 261. https://doi.org/10.3390/catal10020261