Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Hypoxia
2.3. Transient Cell Transfection
2.4. RNA Interference
2.5. Western Blot Analysis
2.6. Quantitative Real-Time PCR Analysis
2.7. Transient Transfection and Luciferase Assay
2.8. Decoy Oligonucleotide (ODN) Technique
2.9. Proliferation Assay
2.10. Migration Assays
2.11. Statistical Analysis
3. Results
3.1. Hypoxia Stimulates PTN Expression Through Increased Transcription of Corresponding Gene
3.2. HIF-1α and HIF-2α Are Involved in the Hypoxia-Induced PTN Up-Regulation
3.3. AP-1 Is Involved in the Hypoxia-Induced PTN Expression
3.4. PTN Expression Inhibits Hypoxia-Induced Endothelial Cell Proliferation and Migration
3.5. Hypoxia Decreases PTN Expression in Glioblastoma Cells That Do Not Express ανβ3 Integrin
3.6. The Interplay Between Hypoxia and PTPRZ1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIF | hypoxia-inducible transcription factor |
PTN | pleiotrophin |
PTPRZ1 | protein tyrosine phosphatase receptor zeta 1 |
VEGFA165 | vascular endothelial growth factor A 165 |
References
- Bruick, R.K.; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294, 1337–1340. [Google Scholar] [CrossRef]
- Benita, Y.; Kikuchi, H.; Smith, A.D.; Zhang, M.Q.; Chung, D.C.; Xavier, R.J. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009, 37, 4587–4602. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, I.; Zhang, S.; Platoshyn, O.; Remillard, C.V.; Cowling, R.T.; Yuan, J.X. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, L1233–L1245. [Google Scholar] [CrossRef] [PubMed]
- Laderoute, K.R. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin. Cell Dev. Biol. 2005, 16, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, G.; Zhang, W.; Wang, Y.L.; Yang, H. Low-dose aspirin reduces hypoxia-induced sFlt1 release via the JNK/AP-1 pathway in human trophoblast and endothelial cells. J. Cell. Physiol. 2019, 234, 18928–18941. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Kalra, N.; Ganju, L.; Singh, M. Activator protein-1 (AP-1): A bridge between life and death in lung epithelial (A549) cells under hypoxia. Mol. Cell. Biochem. 2017, 436, 99–110. [Google Scholar] [CrossRef]
- Polytarchou, C.; Hatziapostolou, M.; Papadimitriou, E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J. Biol. Chem. 2005, 280, 40428–40435. [Google Scholar] [CrossRef]
- Polykratis, A.; Katsoris, P.; Courty, J.; Papadimitriou, E. Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J. Biol. Chem. 2005, 280, 22454–22461. [Google Scholar] [CrossRef]
- Mikelis, C.; Sfaelou, E.; Koutsioumpa, M.; Kieffer, N.; Papadimitriou, E. Integrin αvβ3 is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase β/ζ. FASEB J. 2009, 23, 1459–1469. [Google Scholar] [CrossRef]
- Lamprou, M.; Kastana, P.; Kofina, F.; Tzoupis, H.; Barmpoutsi, S.; Sajib, M.S.; Koutsioumpa, M.; Poimenidi, E.; Zompra, A.A.; Tassopoulos, D.; et al. Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on ανβ3 integrin expression. Angiogenesis 2020, 23, 621–636. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Mourkogianni, E.; Ntenekou, D.; Christopoulou, M.; Koutsioumpa, M.; Lamprou, M. On the role of pleiotrophin and its receptors in development and angiogenesis. Int. J. Dev. Biol. 2022, 66, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Kastana, P.; Ntenekou, D.; Mourkogianni, E.; Enake, M.K.; Xanthopoulos, A.; Choleva, E.; Marazioti, A.; Nikou, S.; Akwii, R.G.; Papadaki, E.; et al. Genetic deletion or tyrosine phosphatase inhibition of PTPRZ1 activates c-Met to up-regulate angiogenesis and lung adenocarcinoma growth. Int. J. Cancer 2023, 153, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, E.; Kanellopoulou, V.K. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int. J. Mol. Sci. 2023, 24, 8093. [Google Scholar] [CrossRef] [PubMed]
- Koutsioumpa, M.; Poimenidi, E.; Pantazaka, E.; Theodoropoulou, C.; Skoura, A.; Megalooikonomou, V.; Kieffer, N.; Courty, J.; Mizumoto, S.; Sugahara, K.; et al. Receptor protein tyrosine phosphatase beta/zeta is a functional binding partner for vascular endothelial growth factor. Mol. Cancer 2015, 14, 19. [Google Scholar] [CrossRef]
- Antoine, M.; Tag, C.G.; Wirz, W.; Borkham-Kamphorst, E.; Sawitza, I.; Gressner, A.M.; Kiefer, P. Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: Implications for its role in experimental biliary liver fibrogenesis. Biochem. Biophys. Res. Commun. 2005, 337, 1153–1164. [Google Scholar] [CrossRef]
- Li, J.; Wei, H.; Chesley, A.; Moon, C.; Krawczyk, M.; Volkova, M.; Ziman, B.; Margulies, K.B.; Talan, M.; Crow, M.T.; et al. The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through the inhibition of endogenous AKT/PKB activity. J. Biol. Chem. 2007, 282, 34984–34993. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.J.; He, Y.Y.; Xu, J.; Hsu, C.Y.; Deuel, T.F. Upregulation of pleiotrophin gene expression in developing microvasculature, macrophages, and astrocytes after acute ischemic brain injury. J. Neurosci. 1998, 18, 3699–3707. [Google Scholar] [CrossRef]
- Wang, V.; Davis, D.A.; Haque, M.; Huang, L.E.; Yarchoan, R. Differential gene up-regulation by hypoxia-inducible factor-1α and hypoxia-inducible factor-2α in HEK293T cells. Cancer Res. 2005, 65, 3299–3306. [Google Scholar] [CrossRef]
- Wang, V.; Davis, D.A.; Veeranna, R.P.; Haque, M.; Yarchoan, R. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia-inducible factor-2 alpha. PLoS ONE 2010, 5, e9641. [Google Scholar] [CrossRef]
- Chen, M.; Karimpour, P.A.; Elliott, A.; He, D.; Knifley, T.; Liu, J.; Wang, C.; O’Connor, K.L. Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties. Cancers 2024, 16, 3683. [Google Scholar] [CrossRef]
- Choleva, E.; Menounou, L.; Ntenekou, D.; Kastana, P.; Tzoupis, H.; Katraki-Pavlou, S.; Drakopoulou, M.; Spyropoulos, D.; Andrikopoulou, A.; Kanellopoulou, V.; et al. Targeting the interaction of pleiotrophin and VEGFA165 with protein tyrosine phosphatase receptor zeta 1 inhibits endothelial cell activation and angiogenesis. Eur. J. Pharmacol. 2024, 977, 176692. [Google Scholar] [CrossRef] [PubMed]
- Hatziapostolou, M.; Delbe, J.; Katsoris, P.; Polytarchou, C.; Courty, J.; Papadimitriou, E. Heparin affin regulatory peptide is a key player in prostate cancer cell growth and angiogenicity. Prostate 2005, 65, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Nauta, T.D.; Duyndam, M.C.; Weijers, E.M.; van Hinsbergh, V.M.; Koolwijk, P. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells. PLoS ONE 2016, 11, e0160700, Erratum in PLoS ONE 2016, 11, e0163840. https://doi.org/10.1371/journal.pone.0163840. [Google Scholar] [CrossRef]
- Wang, G.L.; Semenza, G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction. Blood 1993, 82, 3610–3615. [Google Scholar] [CrossRef]
- Mylonis, I.; Chachami, G.; Samiotaki, M.; Panayotou, G.; Paraskeva, E.; Kalousi, A.; Georgatsou, E.; Bonanou, S.; Simos, G. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1α. J. Biol. Chem. 2006, 281, 33095–33106. [Google Scholar] [CrossRef]
- Befani, C.; Mylonis, I.; Gkotinakou, I.M.; Georgoulias, P.; Hu, C.J.; Simos, G.; Liakos, P. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int. J. Biochem. Cell Biol. 2013, 45, 2359–2368. [Google Scholar] [CrossRef] [PubMed]
- Koutsioumpa, M.; Polytarchou, C.; Courty, J.; Zhang, Y.; Kieffer, N.; Mikelis, C.; Skandalis, S.S.; Hellman, U.; Iliopoulos, D.; Papadimitriou, E. Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration. J. Biol. Chem. 2013, 288, 343–354. [Google Scholar] [CrossRef]
- Poimenidi, E.; Theodoropoulou, C.; Koutsioumpa, M.; Skondra, L.; Droggiti, E.; van den Broek, M.; Koolwijk, P.; Papadimitriou, E. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner. Vasc. Pharmacol. 2016, 80, 11–19. [Google Scholar] [CrossRef]
- Yang, Y.T.; Ju, T.C.; Yang, D.I. Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells. J. Neurochem. 2005, 93, 513–525. [Google Scholar] [CrossRef]
- Reynolds, P.R.; Mucenski, M.L.; Le Cras, T.D.; Nichols, W.C.; Whitsett, J.A. Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J. Biol. Chem. 2004, 279, 37124–37132. [Google Scholar] [CrossRef]
- Tsunoda, T.; Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 1999, 15, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Plaisier, C.L.; O’Brien, S.; Bernard, B.; Reynolds, S.; Simon, Z.; Toledo, C.M.; Ding, Y.; Reiss, D.J.; Paddison, P.J.; Baliga, N.S. Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis. Cell Syst. 2016, 3, 172–186. [Google Scholar] [CrossRef]
- Orlando, I.M.C.; Lafleur, V.N.; Storti, F.; Spielmann, P.; Crowther, L.; Santambrogio, S.; Schödel, J.; Hoogewijs, D.; Mole, D.R.; Wenger, R.H. Distal and proximal hypoxia response elements cooperate to regulate organ-specific erythropoietin gene expression. Haematologica 2020, 105, 2774–2784. [Google Scholar] [CrossRef]
- Michiels, C.; Minet, E.; Michel, G.; Mottet, D.; Piret, J.P.; Raes, M. HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: Role of MAP kinases. IUBMB Life 2001, 52, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Dai, J.; Huang, C.; Zhang, Q.; Bhanot, O.; Pelle, E. Deferoxamine synergistically enhances iron-mediated AP-1 activation: A showcase of the interplay between extracellular-signal-regulated kinase and tyrosine phosphatase. Free Radic. Res. 2007, 41, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Hatziapostolou, M.; Polytarchou, C.; Katsoris, P.; Courty, J.; Papadimitriou, E. Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J. Biol. Chem. 2006, 281, 32217–32226. [Google Scholar] [CrossRef] [PubMed]
- Polytarchou, C.; Hatziapostolou, M.; Poimenidi, E.; Mikelis, C.; Papadopoulou, A.; Parthymou, A.; Papadimitriou, E. Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase β/ζ. Int. J. Cancer 2009, 124, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.T.; Wang, Z.; Nuyten, D.S.; Rodriguez, E.H.; Schaner, M.E.; Salim, A.; Wang, Y.; Kristensen, G.B.; Helland, A.; Børresen-Dale, A.L.; et al. Gene expression programs in response to hypoxia: Cell type specificity and prognostic significance in human cancers. PLoS Med. 2006, 3, e47. [Google Scholar] [CrossRef] [PubMed]
- Parthymou, A.; Lampropoulou, E.; Mikelis, C.; Drosou, G.; Papadimitriou, E. Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells. Eur. J. Cell Biol. 2008, 87, 17–29. [Google Scholar] [CrossRef]
- Lu, K.V.; Jong, K.A.; Kim, G.Y.; Singh, J.; Dia, E.Q.; Yoshimoto, K.; Wang, M.Y.; Cloughesy, T.F.; Nelson, S.F.; Mischel, P.S. Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J. Biol. Chem. 2005, 280, 26953–26964. [Google Scholar] [CrossRef]
- Mourkogianni, E.; Karavasili, K.; Xanthopoulos, A.; Enake, M.K.; Menounou, L.; Papadimitriou, E. Pleiotrophin Activates cMet- and mTORC1-Dependent Protein Synthesis through PTPRZ1-The Role of ανβ3 Integrin. Int. J. Mol. Sci. 2024, 25, 10839. [Google Scholar] [CrossRef] [PubMed]
- Héroult, M.; Bernard-Pierrot, I.; Delbé, J.; Hamma-Kourbali, Y.; Katsoris, P.; Barritault, D.; Papadimitriou, E.; Plouet, J.; Courty, J. Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 2004, 23, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poimenidi, E.; Droggiti, E.; Karavasili, K.; Kotsirilou, D.; Mourkogianni, E.; Koolwijk, P.; Papadimitriou, E. Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers 2025, 17, 1516. https://doi.org/10.3390/cancers17091516
Poimenidi E, Droggiti E, Karavasili K, Kotsirilou D, Mourkogianni E, Koolwijk P, Papadimitriou E. Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers. 2025; 17(9):1516. https://doi.org/10.3390/cancers17091516
Chicago/Turabian StylePoimenidi, Evangelia, Eirini Droggiti, Katerina Karavasili, Dimitra Kotsirilou, Eleni Mourkogianni, Pieter Koolwijk, and Evangelia Papadimitriou. 2025. "Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration" Cancers 17, no. 9: 1516. https://doi.org/10.3390/cancers17091516
APA StylePoimenidi, E., Droggiti, E., Karavasili, K., Kotsirilou, D., Mourkogianni, E., Koolwijk, P., & Papadimitriou, E. (2025). Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers, 17(9), 1516. https://doi.org/10.3390/cancers17091516