Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns
Simple Summary
Abstract
1. Introduction
2. Current Standard Biomarkers
2.1. HER2
2.2. Programmed Death Protein 1 (PD1)
2.3. Microsatellite Instability (MSI) and Mismatch–Repair Deficiency (dMMR)
2.4. Tumor Mutational Burden (TMB)
2.5. Claudin 18.2
3. Clinically Significant Co-Expression Clusters
3.1. PD-L1 and HER2
3.2. PD-(L)1 and CLDN18.2
3.3. PD-(L)1 and MSI
3.4. CLDN18.2 and HER2
4. Biomarkers with Historical Background and High Potential for Future Implications
4.1. Vascular Endothelial Growth Factor (VEGF)
4.2. EGFR
4.3. Mesenchymal–Epithelial Transition (MET)
4.4. EBV
5. Future Biomarkers
5.1. Fibroblast Growth Factor Receptor (FGFR)
5.2. T-Cell Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Motif Domain (TIGIT)
5.3. Dickkopf-1 (DKK-1)
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cancer Today. Available online: https://gco.iarc.who.int/today/ (accessed on 14 January 2025).
- Arnold, M.; Park, J.Y.; Camargo, M.C.; Lunet, N.; Forman, D.; Soerjomataram, I. Is Gastric Cancer Becoming a Rare Disease? A Global Assessment of Predicted Incidence Trends to 2035. Gut 2020, 69, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Cancer of the Stomach—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 5 June 2024).
- Cancer of the Esophagus—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/esoph.html (accessed on 5 June 2024).
- Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric Cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-L.; He, Y.; Xu, R.-H. Gastric Cancer Treatment: Recent Progress and Future Perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Gravalos, C.; Jimeno, A. HER2 in Gastric Cancer: A New Prognostic Factor and a Novel Therapeutic Target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef]
- Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 Expression Status in Diverse Cancers: Review of Results from 37,992 Patients. Cancer Metastasis Rev. 2015, 34, 157–164. [Google Scholar] [CrossRef]
- Fleitas, T.; Smyth, E.C.; Gambardella, V.; Tarazona Llavero, N. Gastrointestinal Tract Tumours; ESMO Press: Lugano, Switzerland, 2021; p. 118. ISBN 978-88-944465-2-4. [Google Scholar]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/Neu Proto-Oncogene in Human Breast and Ovarian Cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.-J.; Feng-yi, F.; Xu, J.M.; Lee, K.-W.; Jiao, S.-C.; Chong, J.L.; López-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.; Hollmén, M.; Junttila, T.T.; Kapanen, A.I.; Tommola, S.; Soini, Y.; Helin, H.; Salo, J.; Joensuu, H.; Sihvo, E.; et al. Amplification of HER-2 in Gastric Carcinoma: Association with Topoisomerase IIα Gene Amplification, Intestinal Type, Poor Prognosis and Sensitivity to Trastuzumab. Ann. Oncol. 2005, 16, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Park, D.I.; Yun, J.W.; Park, J.H.; Oh, S.J.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; Yoo, C.H.; et al. HER-2/Neu Amplification Is an Independent Prognostic Factor in Gastric Cancer. Dig. Dis. Sci. 2006, 51, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Puhr, H.C.; Pablik, E.; Berghoff, A.S.; Jomrich, G.; Schoppmann, S.F.; Preusser, M.; Ilhan-Mutlu, A. Viennese Risk Prediction Score for Advanced Gastroesophageal Carcinoma Based on Alarm Symptoms (VAGAS Score): Characterisation of Alarm Symptoms in Advanced Gastro-Oesophageal Cancer and Its Correlation with Outcome. ESMO Open 2020, 5, e000623. [Google Scholar] [CrossRef]
- Mateo, J.; Chakravarty, D.; Dienstmann, R.; Jezdic, S.; Gonzalez-Perez, A.; Lopez-Bigas, N.; Ng, C.K.Y.; Bedard, P.L.; Tortora, G.; Douillard, J.-Y.; et al. A Framework to Rank Genomic Alterations as Targets for Cancer Precision Medicine: The ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). Ann. Oncol. 2018, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef]
- Tominaga, N.; Gotoda, T.; Hara, M.; Hale, M.D.; Tsuchiya, T.; Matsubayashi, J.; Kono, S.; Kusano, C.; Itoi, T.; Fujimoto, K.; et al. Five Biopsy Specimens from the Proximal Part of the Tumor Reliably Determine HER2 Protein Expression Status in Gastric Cancer. Gastric Cancer 2016, 19, 553–560. [Google Scholar] [CrossRef]
- Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [Google Scholar] [CrossRef]
- Lee, S.; de Boer, W.B.; Fermoyle, S.; Platten, M.; Kumarasinghe, M.P. Human Epidermal Growth Factor Receptor 2 Testing in Gastric Carcinoma: Issues Related to Heterogeneity in Biopsies and Resections. Histopathology 2011, 59, 832–840. [Google Scholar] [CrossRef]
- Lee, H.E.; Park, K.U.; Yoo, S.B.; Nam, S.K.; Park, D.J.; Kim, H.-H.; Lee, H.S. Clinical Significance of Intratumoral HER2 Heterogeneity in Gastric Cancer. Eur. J. Cancer 2013, 49, 1448–1457. [Google Scholar] [CrossRef]
- Nakamura, M.; Watanabe, A.; Yoshizawa, A.; Iwasaki, S.; Nomura, A.; Matsumura, M.; Murai, T.; Itaya, K.; Koike, Y.; Izumi, T.; et al. The Risk of Weekend Biopsy: Impact of Specimen Source and Fixation Status on HER2 Assessment in the Treatment of Advanced Gastric Cancer (The HER_WEEKEND Study). Pathol. Int. 2023, 73, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Haffner, I.; Schierle, K.; Raimúndez, E.; Geier, B.; Maier, D.; Hasenauer, J.; Luber, B.; Walch, A.; Kolbe, K.; Riera Knorrenschild, J.; et al. HER2 Expression, Test Deviations, and Their Impact on Survival in Metastatic Gastric Cancer: Results From the Prospective Multicenter VARIANZ Study. J. Clin. Oncol. 2021, 39, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Lapatinib, a Dual EGFR and HER2 Kinase Inhibitor, Selectively Inhibits HER2-Amplified Human Gastric Cancer Cells and Is Synergistic with Trastuzumab in Vitro and in Vivo—PubMed. Available online: https://pubmed-ncbi-nlm-nih-gov.ez.srv.meduniwien.ac.at/20179222/ (accessed on 4 August 2024).
- Hecht, J.R.; Bang, Y.-J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination With Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2–Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC—A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus Trastuzumab and Chemotherapy for HER2-Positive Metastatic Gastric or Gastro-Oesophageal Junction Cancer (JACOB): Final Analysis of a Double-Blind, Randomised, Placebo-Controlled Phase 3 Study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Siddiqui, A.; Heeson, S.; Kiermaier, A.; Macharia, H.; Restuccia, E.; et al. Pertuzumab, Trastuzumab, and Chemotherapy in HER2-Positive Gastric/Gastroesophageal Junction Cancer: End-of-Study Analysis of the JACOB Phase III Randomized Clinical Trial. Gastric Cancer 2023, 26, 123–131. [Google Scholar] [CrossRef]
- Shitara, K.; Hara, H.; Yoshikawa, T.; Fujitani, K.; Nishina, T.; Hosokawa, A.; Asakawa, T.; Kawakami, S.; Muro, K. Pertuzumab plus Trastuzumab and Chemotherapy for Japanese Patients with HER2-Positive Metastatic Gastric or Gastroesophageal Junction Cancer: A Subgroup Analysis of the JACOB Trial. Int. J. Clin. Oncol. 2020, 25, 301–311. [Google Scholar] [CrossRef]
- Liu, T.; Qin, Y.; Li, J.; Xu, R.; Xu, J.; Yang, S.; Qin, S.; Bai, Y.; Wu, C.; Mao, Y.; et al. Pertuzumab in Combination with Trastuzumab and Chemotherapy for Chinese Patients with HER2-Positive Metastatic Gastric or Gastroesophageal Junction Cancer: A Subpopulation Analysis of the JACOB Trial. Cancer Commun. 2019, 39, 38. [Google Scholar] [CrossRef]
- Satoh, T.; Xu, R.-H.; Chung, H.C.; Sun, G.-P.; Doi, T.; Xu, J.-M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.-W.; et al. Lapatinib plus Paclitaxel versus Paclitaxel Alone in the Second-Line Treatment of HER2-Amplified Advanced Gastric Cancer in Asian Populations: TyTAN--a Randomized, Phase III Study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab Emtansine versus Taxane Use for Previously Treated HER2-Positive Locally Advanced or Metastatic Gastric or Gastro-Oesophageal Junction Adenocarcinoma (GATSBY): An International Randomised, Open-Label, Adaptive, Phase 2/3 Study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander Killing Effect of DS-8201a, a Novel Anti-HER2 Antibody-Drug Conjugate, in Tumors with HER2 Heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.; Chao, J.; et al. Trastuzumab Deruxtecan in Patients in the USA and Europe with HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer with Disease Progression on or after a Trastuzumab-Containing Regimen (DESTINY-Gastric02): Primary and Updated Analyses from a Single-Arm, Phase 2 Study. Lancet Oncol. 2023, 24, 744–756. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Anti-Human Epidermal Growth Factor Receptor 2 Treatment-Naive Patients With Human Epidermal Growth Factor Receptor 2-Low Gastric or Gastroesophageal Junction Adenocarcinoma: Exploratory Cohort Results in a Phase II Trial. J. Clin. Oncol. 2023, 41, 816–825. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Shimozaki, K.; Fukuoka, S.; Ooki, A.; Yamaguchi, K. HER2-Low Gastric Cancer: Is the Subgroup Targetable? ESMO Open 2024, 9, 103679. [Google Scholar] [CrossRef]
- Shitara, K.; Barlaskar, F.; Franke, F.; Kawaguchi, Y.; Shen, L.; Kamio, T.; Meinhardt, G.; Tabernero, J. P-159 Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Gastric Cancer (GC) or Gastroesophageal Junction (GEJ) Adenocarcinoma Who Have Progressed on or after a Trastuzumab-Containing Regimen (DESTINY-Gastric04): A Randomized Phase 3 Study. Ann. Oncol. 2022, 33, S306–S307. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Oh, D.-Y.; Rha, S.Y.; Lee, K.W.; Steeghs, N.; Chao, Y.; Di Bartolomeo, M.; Díez Garcia, M.; Haj Mohammad, N.; Stein, A.; et al. Dose-Escalation and Dose-Expansion Study of Trastuzumab Deruxtecan (T-DXd) Monotherapy and Combinations in Patients (Pts) with Advanced/Metastatic HER2+ Gastric Cancer (GC)/Gastroesophageal Junction Adenocarcinoma (GEJA): DESTINY-Gastric03. J. Clin. Oncol. 2022, 40, 295. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Rosales, M.; Chung, H.C.; Yoon, H.H.; Shen, L.; Moehler, M.; Kang, Y.-K. MAHOGANY: Margetuximab Combination in HER2+ Unresectable/Metastatic Gastric/Gastroesophageal Junction Adenocarcinoma. Future Oncol. 2021, 17, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Tehfe, M.; Lee, J.; Rha, S.Y.; Nakamura, Y.; Tabernero, J.; Shitara, K.; Oh, D.-Y.; Eads, J.; Marshall, J.; Wainberg, Z.A.; et al. 1523P Phase II Dose Optimization Results from MOUNTAINEER-02: A Study of Tucatinib, Trastuzumab, Ramucirumab, and Paclitaxel for HER2+ Gastroesophageal Cancer (GEC). Ann. Oncol. 2023, 34, S857–S858. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Hamilton, E.P.; Beeram, M.; Hanna, D.L.; El-Khoueiry, A.B.; Kang, Y.-K.; Lee, K.W.; Lee, J.; Rha, S.Y.; Chaves, J.M.; et al. Zanidatamab (ZW25) in HER2-Expressing Gastroesophageal Adenocarcinoma (GEA): Results from a Phase I Study. J. Clin. Oncol. 2021, 39, 164. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Chen, Y.; Liu, B.; Du, Y.; Cheng, Y.; Li, C.; Zhang, J.; Yang, M.; Liu, Y.; et al. 1425P Efficacy and Safety of KN026 in Combination with Chemotherapy in Patients (Pts) with Unresectable or Metastatic HER2 Positive Gastric or Gastroesophageal Cancers (GC/GEJC) after First-Line Treatment with a Trastuzumab-Containing Regimen. Ann. Oncol. 2024, 35, S889. [Google Scholar] [CrossRef]
- Shi, F.; Liu, Y.; Zhou, X.; Shen, P.; Xue, R.; Zhang, M. Disitamab Vedotin: A Novel Antibody-Drug Conjugates for Cancer Therapy. Drug Deliv. 2022, 29, 1335–1344. [Google Scholar] [CrossRef]
- Tobias, J.; Kundi, M.; Garner-Spitzer, E.; Zielinski, C.; Maglakelidze, M.; Andric, Z.; Petrovic, Z.; Nagarkar, R.; Chawla, T.; Chong, L.; et al. PD-8 HERIZON: A Phase 2 Study of HER-Vaxx (IMU-131), a HER2-Targeting Peptide Vaccine plus SOC Chemotherapy in Patients with HER2+ Advanced Stomach Cancer—Correlation of the Antibody Responses and Clinical Outcome. Ann. Oncol. 2023, 34, S4. [Google Scholar] [CrossRef]
- Tsai, C.; Suman, S.; Chu, C.; Chou, J.F.; Krein, P.M.; Capanu, M.; Ilson, D.H.; Ku, G.Y.; Janjigian, Y.Y.; Drilon, A.E.; et al. Association of ERBB2 Extrachromosomal DNA (ecDNA) with First-Line HER2-Targeted Treatment Outcomes in Advanced Esophagogastric Adenocarcinoma (EGC). J. Clin. Oncol. 2024, 42, 4041. [Google Scholar] [CrossRef]
- Schoemig-Markiefka, B.; Eschbach, J.; Scheel, A.H.; Pamuk, A.; Rueschoff, J.; Zander, T.; Buettner, R.; Schroeder, W.; Bruns, C.J.; Loeser, H.; et al. Optimized PD-L1 Scoring of Gastric Cancer. Gastric Cancer 2021, 24, 1115–1122. [Google Scholar] [CrossRef]
- Klempner, S.J.; Cowden, E.S.; Cytryn, S.L.; Fassan, M.; Kawakami, H.; Shimada, H.; Tang, L.H.; Wagner, D.-C.; Yatabe, Y.; Savchenko, A.; et al. PD-L1 Immunohistochemistry in Gastric Cancer: Comparison of Combined Positive Score and Tumor Area Positivity Across 28-8, 22C3, and SP263 Assays. J. Clin. Oncol. Precis. Oncol. 2024, 8, e2400230. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef]
- PD-L1 Immunohistochemistry in Gastric Cancer: Comparison of Combined Positive Score and Tumor Area Positivity Across 28-8, 22C3, and SP263 Assays|JCO Precision Oncology. Available online: https://ascopubs.org/doi/10.1200/PO.24.00230 (accessed on 1 November 2024).
- Liu, C.; Fang, F.; Kong, Y.; ElGabry, E.A. Tumor Area Positivity (TAP) Score of Programmed Death-Ligand 1 (PD-L1): A Novel Visual Estimation Method for Combined Tumor Cell and Immune Cell Scoring. Diagn. Pathol. 2023, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Oh, D.-Y.; Kato, K.; Tabernero, J.; Cruz-Correa, M.; Wyrwicz, L.S.; Cid, R.A.P.; Cubillo, A.; Evesque, L.; Fornaro, L.; et al. 397MO Tislelizumab (TIS) plus Chemotherapy (CT) vs Placebo (PBO) plus CT in HER2-Negative Advanced or Metastatic Gastric or Gastro-Esophageal Junction Adenocarcinoma (GC/GEJC): PD-L1 Biomarker Analysis from RATIONALE-305. Ann. Oncol. 2024, 35, S160–S161. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, K.-M. PD-L1 Expression in Gastric Cancer: Interchangeability of 22C3 and 28-8 pharmDx Assays for Responses to Immunotherapy. Mod. Pathol. 2021, 34, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Yeong, J.; Lum, H.Y.J.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; Tay, R.Y.K.; Choo, J.R.-E.; Jeyasekharan, A.D.; Miow, Q.H.; Loo, L.-H.; et al. Choice of PD-L1 Immunohistochemistry Assay Influences Clinical Eligibility for Gastric Cancer Immunotherapy. Gastric Cancer 2022, 25, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, A.; Oudijk, L.; Sundar, R.; Daumer, C.; Casas, J.; D’Haese, D.; Mauer, M.; van Grieken, N.; Smyth, E.C.; Moehler, M. EORTC Stomach Cancer PD-L1 Biomarker European Initiative: The ASPIRE Study Protocol. ESMO Gastrointest. Oncol. 2024, 5, 100071. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Ajani, J.A.; Moehler, M.; Shen, L.; Garrido, M.; Gallardo, C.; Wyrwicz, L.; Yamaguchi, K.; Cleary, J.M.; Elimova, E.; et al. First-Line Nivolumab Plus Chemotherapy for Advanced Gastric, Gastroesophageal Junction, and Esophageal Adenocarcinoma: 3-Year Follow-Up of the Phase III CheckMate 649 Trial. J. Clin. Oncol. 2024, 42, 2012–2020. [Google Scholar] [CrossRef]
- Shitara, K.; Moehler, M.H.; Ajani, J.A.; Shen, L.; Garrido, M.; Gallardo, C.; Wyrwicz, L.S.; Yamaguchi, K.; Cleary, J.M.; Elimova, E.; et al. Nivolumab (NIVO) + Chemotherapy (Chemo) vs Chemo as First-Line (1L) Treatment for Advanced Gastric Cancer/Gastroesophageal Junction Cancer/Esophageal Adenocarcinoma (GC/GEJC/EAC): 4 Year (Yr) Follow-up of CheckMate 649. J. Clin. Oncol. 2024, 42, 306. [Google Scholar] [CrossRef]
- Rha, S.Y.; Oh, D.-Y.; Yañez, P.; Bai, Y.; Ryu, M.-H.; Lee, J.; Rivera, F.; Alves, G.V.; Garrido, M.; Shiu, K.-K.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for HER2-Negative Advanced Gastric Cancer (KEYNOTE-859): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef]
- Rha, S.Y.; Wyrwicz, L.S.; Yanez Weber, P.E.; Bai, Y.; Ryu, M.-H.; Lee, J.; Rivera, F.; Alves, G.V.; Garrido, M.; Shiu, K.-K.; et al. Pembrolizumab (Pembro) + Chemotherapy (Chemo) for Advanced HER2-Negative Gastric or Gastroesophageal Junction (G/GEJ) Cancer: Updated Results from the KEYNOTE-859 Study. J. Clin. Oncol. 2024, 42, 4045. [Google Scholar] [CrossRef]
- Keytruda|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda (accessed on 2 May 2024).
- Qiu, M.-Z.; Oh, D.-Y.; Kato, K.; Arkenau, T.; Tabernero, J.; Correa, M.C.; Zimina, A.V.; Bai, Y.; Shi, J.; Lee, K.-W.; et al. Tislelizumab plus Chemotherapy versus Placebo plus Chemotherapy as First Line Treatment for Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma: RATIONALE-305 Randomised, Double Blind, Phase 3 Trial. BMJ 2024, 385, e078876. [Google Scholar] [CrossRef] [PubMed]
- Tevimbra—Opinion on Variation to Marketing Authorisation|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/variation/tevimbra (accessed on 1 November 2024).
- Cruz-Correa, M.; Oh, D.-Y.; Kato, K.; Tabernero, J.; Bai, Y.; Shi, J.; Lee, K.-W.; Hirano, H.; Spigel, D.R.; Wyrwicz, L.S.; et al. 1437P Tislelizumab (TIS) + Chemotherapy (CT) vs Placebo (PBO) + CT in HER2-Negative Advanced or Metastatic Gastric or Gastro-Oesophageal Junction Adenocarcinoma (GC/GEJC): RATIONALE-305 Study Minimum 3-Year Survival Follow-Up. Ann. Oncol. 2024, 35, S893–S894. [Google Scholar] [CrossRef]
- Eweje, F.; Li, Z.; Gopaulchan, M.; Attaranzadeh, A.; Kloker, L.; Jiang, Y.; Diehn, M.; Li, G.; Li, R. Use of Artificial Intelligence–Based Digital Pathology to Predict Outcomes for Immune Checkpoint Inhibitor Therapy in Advanced Gastro-Esophageal Cancer. J. Clin. Oncol. 2024, 42, 4013. [Google Scholar] [CrossRef]
- Nixon, A.B.; Navarro, F.; Zhou, K.I.; Abbott, C.; Howard, L.; Brady, J.C.; Liu, Y.; Jia, J.; Niedzwiecki, D.; Chen, R.; et al. Ultra-Sensitive ctDNA Dynamics to Capture Therapy Response in Pembrolizumab-Treated Gastroesophageal Cancer. J. Clin. Oncol. 2024, 42, 4025. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, D.-L.; Wang, F.; Yang, C.-P.; Chen, X.-X.; You, J.-Q.; Huang, J.-S.; Shao, Y.; Zhu, D.-Q.; Ouyang, Y.-M.; et al. The Predicting Role of Circulating Tumor DNA Landscape in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors. Mol. Cancer 2020, 19, 154. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.-L.; Chang, S.-C.; Lan, Y.-T.; Huang, K.-H.; Chen, J.-H.; Lo, S.-S.; Hsieh, M.-C.; Li, A.F.-Y.; Wu, C.-W.; Chiou, S.-H. Microsatellite Instability Is Associated with a Better Prognosis for Gastric Cancer Patients after Curative Surgery. World J. Surg. 2012, 36, 2131–2138. [Google Scholar] [CrossRef]
- Falchetti, M.; Saieva, C.; Lupi, R.; Masala, G.; Rizzolo, P.; Zanna, I.; Ceccarelli, K.; Sera, F.; Mariani-Costantini, R.; Nesi, G.; et al. Gastric Cancer with High-Level Microsatellite Instability: Target Gene Mutations, Clinicopathologic Features, and Long-Term Survival. Hum. Pathol. 2008, 39, 925–932. [Google Scholar] [CrossRef]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.-J.; De Vita, F.; Landers, G.; Yen, C.-J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef]
- Yoon, H.H.; Jin, Z.; Kour, O.; Kankeu Fonkoua, L.A.; Shitara, K.; Gibson, M.K.; Prokop, L.J.; Moehler, M.; Kang, Y.-K.; Shi, Q.; et al. Association of PD-L1 Expression and Other Variables With Benefit From Immune Checkpoint Inhibition in Advanced Gastroesophageal Cancer: Systematic Review and Meta-Analysis of 17 Phase 3 Randomized Clinical Trials. JAMA Oncol. 2022, 8, 1456–1465. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising Targets for Cancer Therapy. Sig Transduct. Target. Ther. 2023, 8, 1–38. [Google Scholar] [CrossRef]
- ESMO Gastric Cancer Living Guideline|Metastatic Disease|First-Line HER2-Negative. Available online: https://www.esmo.org/living-guidelines/esmo-gastric-cancer-living-guideline/metastatic-disease/metastatic-disease/first-line-her2-negative (accessed on 12 December 2024).
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-Line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Hironaka, S.; Esaki, T.; Chayama, K.; Tsuda, M.; Sugimoto, N.; Kadowaki, S.; Makiyama, A.; Machida, N.; Hirano, H.; et al. An Investigator-Initiated Phase 2 Study of Nivolumab Plus Low-Dose Ipilimumab as First-Line Therapy for Microsatellite Instability—High Advanced Gastric or Esophagogastric Junction Cancer (NO LIMIT, WJOG13320G/CA209-7W7). Cancers 2021, 13, 805. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Kawakami, H.; Kadowaki, S.; Makiyama, A.; Tsuda, M.; Hirata, K.; Sugimoto, N.; Machida, N.; Hara, H.; Hirano, H.; et al. 1513MO A Phase II Study of Nivolumab plus Low Dose Ipilimumab as First -Line Therapy in Patients with Advanced Gastric or Esophago-Gastric Junction MSI-H Tumor: First Results of the NO LIMIT Study (WJOG13320G/CA209-7W7). Ann. Oncol. 2023, 34, S852–S853. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.; Vivaldi, C.; Olesinski, T.; Chung, H.C.; Muro, K.; et al. The Association of Tissue Tumor Mutational Burden (tTMB) Using the Foundation Medicine Genomic Platform with Efficacy of Pembrolizumab versus Paclitaxel in Patients (Pts) with Gastric Cancer (GC) from KEYNOTE-061. J. Clin. Oncol. 2020, 38, 4537. [Google Scholar] [CrossRef]
- Lee, K.-W.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.S.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; Castro, H.R.; Chao, J.; et al. Association of Tumor Mutational Burden with Efficacy of Pembrolizumab±Chemotherapy as First-Line Therapy for Gastric Cancer in the Phase III KEYNOTE-062 Study. Clin. Cancer Res. 2022, 28, 3489–3498. [Google Scholar] [CrossRef]
- Jang, J.Y.; Jeong, S.Y.; Kim, S.T. Tumor Mutational Burden as a Potential Predictive Marker for the Efficacy of Immunotherapy in Advanced Gastric Cancer. J. Clin. Oncol. 2023, 41, 324. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Günzel, D.; Yu, A.S.L. Claudins and the Modulation of Tight Junction Permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, O. Claudin-18 Splice Variant 2 Is a Pan-Cancer Target Suitable for Therapeutic Antibody Development. Clin. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, I.; Qi, C.; Chen, Y.; Nakamura, Y.; Shen, L.; Shitara, K. Claudin 18.2 as a Novel Therapeutic Target. Nat. Rev. Clin. Oncol. 2024, 21, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Coati, I.; Lotz, G.; Fanelli, G.N.; Brignola, S.; Lanza, C.; Cappellesso, R.; Pellino, A.; Pucciarelli, S.; Spolverato, G.; Guzzardo, V.; et al. Claudin-18 Expression in Oesophagogastric Adenocarcinomas: A Tissue Microarray Study of 523 Molecularly Profiled Cases. Br. J. Cancer 2019, 121, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Yamaguchi, R.; Mukhina, S.; Sahin, U.; Itoh, K.; Türeci, Ö. Comparison of Claudin 18.2 Expression in Primary Tumors and Lymph Node Metastases in Japanese Patients with Gastric Adenocarcinoma. Jpn. J. Clin. Oncol. 2019, 49, 870. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.H.; Park, D.J.; Kim, G.Y.; Cheon, J.; Kang, B.W.; Cha, H.J.; Kim, J.G. Clinical Implications of Claudin18.2 Expression in Patients With Gastric Cancer. Anticancer. Res. 2019, 39, 6973–6979. [Google Scholar] [CrossRef] [PubMed]
- Dottermusch, M.; Krüger, S.; Behrens, H.-M.; Halske, C.; Röcken, C. Expression of the Potential Therapeutic Target Claudin-18.2 Is Frequently Decreased in Gastric Cancer: Results from a Large Caucasian Cohort Study. Virchows Arch. 2019, 475, 563–571. [Google Scholar] [CrossRef]
- Kubota, Y.; Kawazoe, A.; Mishima, S.; Nakamura, Y.; Kotani, D.; Kuboki, Y.; Bando, H.; Kojima, T.; Doi, T.; Yoshino, T.; et al. Comprehensive Clinical and Molecular Characterization of Claudin 18.2 Expression in Advanced Gastric or Gastroesophageal Junction Cancer. ESMO Open 2023, 8, 100762. [Google Scholar] [CrossRef]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-Positive Gastric or Gastroesophageal Junction Adenocarcinoma: The Randomized, Phase 3 GLOW Trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Shitara, K.; Lordick, F.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; Shah, M.A.; Van Cutsem, E.; Xu, R.-H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in Patients with CLDN18.2-Positive, HER2-Negative, Untreated, Locally Advanced Unresectable or Metastatic Gastric or Gastro-Oesophageal Junction Adenocarcinoma (SPOTLIGHT): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef]
- Ogawa, H.; Abe, H.; Yagi, K.; Seto, Y.; Ushiku, T. Claudin-18 Status and Its Correlation with HER2 and PD-L1 Expression in Gastric Cancer with Peritoneal Dissemination. Gastric Cancer 2024, 27, 802–810. [Google Scholar] [CrossRef]
- Pellino, A.; Brignola, S.; Riello, E.; Niero, M.; Murgioni, S.; Guido, M.; Nappo, F.; Businello, G.; Sbaraglia, M.; Bergamo, F.; et al. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J. Pers. Med. 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.E.; Willis, S.E.; Korade, M.; Ortiz, L.; Zalesak-Kravec, S.; Lombard, C.; Richardson, C.; Chambers, A.; Kim, Y.J.; Tsao, T.-S.; et al. CLDN18/CLDN18.2 IHC Assay Comparison (SP455, 43-14A, EPR19202) and Co-Prevalence Expression with Other Biomarkers in Gastric Carcinoma. J. Clin. Oncol. 2024, 42, 4089. [Google Scholar] [CrossRef]
- Türeci, O.; Sahin, U.; Schulze-Bergkamen, H.; Zvirbule, Z.; Lordick, F.; Koeberle, D.; Thuss-Patience, P.; Ettrich, T.; Arnold, D.; Bassermann, F.; et al. A Multicentre, Phase IIa Study of Zolbetuximab as a Single Agent in Patients with Recurrent or Refractory Advanced Adenocarcinoma of the Stomach or Lower Oesophagus: The MONO Study. Ann. Oncol. 2019, 30, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A Randomised Phase II Study of Zolbetuximab (IMAB362) plus EOX versus EOX Alone for First-Line Treatment of Advanced CLDN18.2-Positive Gastric and Gastro-Oesophageal Adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Van Cutsem, E.; Lordick, F.; Enzinger, P.C.; Ilson, D.H.; Shah, M.A.; Xu, R.-H.; Lonardi, S.; Yamaguchi, K.; Hung, Y.-P.; et al. Final Overall Survival Results from Phase 3 SPOTLIGHT Study Evaluating Zolbetuximab + mFOLFOX6 as First-Line (1L) Treatment for Patients (Pts) with Claudin 18 Isoform 2 (CLDN18.2)+, HER2−, Locally Advanced (LA) Unresectable or Metastatic Gastric or Gastroesophageal Junction (mG/GEJ) Adenocarcinoma. J. Clin. Oncol. 2024, 42, 4036. [Google Scholar] [CrossRef]
- Vyloy|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vyloy (accessed on 7 August 2024).
- Gong, J.; Liu, F.; Jin, Z.; Zhang, M.; Zhang, S.; Zhang, Y.; Liang, X.; Li, Y.; Yang, Y.; Shen, L. 1433P A Phase I/II Study of FG-M108 plus Capecitabine and Oxaliplatin (CAPOX) as First-Line (1L) Treatment for Patients with CLDN18.2+/HER2- Advanced Gastric or Gastroesophageal Junction (G/GEJ) Adenocarcinoma. Ann. Oncol. 2024, 35, S892. [Google Scholar] [CrossRef]
- Zhen, D.B.; Thota, R.; del Corral, C.; Geng, D.; Yang, T.; Wang, C.; Amato, G.; Akram, M.; Miller, D.S.; Bubuteishvili-Pacaud, L.; et al. A Phase 1, Open-Label, Dose Escalation and Expansion, Multicenter Study of Claudin 18.2-Targeted Chimeric Antigen Receptor T-Cells in Patients with Unresectable, Locally Advanced, or Metastatic Gastric, Gastroesophageal Junction, Esophageal, or Pancreatic Adenocarcinoma. J. Clin. Oncol. 2023, 41, TPS480. [Google Scholar] [CrossRef]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-Specific CAR T Cells in Gastrointestinal Cancers: Phase 1 Trial Interim Results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- Xu, R.; Wei, X.; Zhang, D.; Qiu, M.; Zhang, Y.; Zhao, H.; Chen, B.; Yan, J. A Phase 1a Dose-Escalation, Multicenter Trial of Anti-Claudin 18.2 Antibody Drug Conjugate CMG901 in Patients with Resistant/Refractory Solid Tumors. J. Clin. Oncol. 2023, 41, 352. [Google Scholar] [CrossRef]
- Liu, J.J.; Yu, X.; Zhang, J.; Yang, J.; Yue, J.; Sun, Y.; Pan, Y.; Sun, M.; Qin, Y.; Shen, L.; et al. 396MO Anti-Claudin 18.2 (CLDN18.2) Antibody-Drug Conjugate (ADC) IBI343 in Patients (Pts) with Solid Tumors and Gastric/Gastro-Esophageal Junction Adenocarcinoma (G/GEJ AC): A Phase I Study. Ann. Oncol. 2024, 35, S160. [Google Scholar] [CrossRef]
- Shitara, K.; Janjigian, Y.Y.; Elimova, E.; Zhang, J.; Chen, M.-H.; Smyth, E.; Lee, J.; Miao, R.; Liu, S.; Holmblad, M.; et al. 495TiP CLARITY-Gastric 01: A Randomised Phase III Study of AZD0901, a Claudin18.2 (CLDN18.2)-Targeted Antibody-Drug Conjugate, in Second- or Later-Line (2L+) Advanced Gastric or Gastroesophageal Junction Cancer (GC/GEJC). Ann. Oncol. 2024, 35, S196–S197. [Google Scholar] [CrossRef]
- Shitara, K.; Xu, R.-H.; Ajani, J.A.; Moran, D.; Guerrero, A.; Li, R.; Pavese, J.; Matsangou, M.; Bhattacharya, P.; Ueno, Y.; et al. Global Prevalence of Claudin 18 Isoform 2 in Tumors of Patients with Locally Advanced Unresectable or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. Gastric Cancer 2024, 27, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- zum Büschenfelde, C.M.; Hermann, C.; Schmidt, B.; Peschel, C.; Bernhard, H. Antihuman Epidermal Growth Factor Receptor 2 (HER2) Monoclonal Antibody Trastuzumab Enhances Cytolytic Activity of Class I-Restricted HER2-Specific T Lymphocytes against HER2-Overexpressing Tumor Cells. Cancer Res. 2002, 62, 2244–2247. [Google Scholar] [PubMed]
- Chaganty, B.K.R.; Qiu, S.; Gest, A.; Lu, Y.; Ivan, C.; Calin, G.A.; Weiner, L.M.; Fan, Z. Trastuzumab Upregulates PD-L1 as a Potential Mechanism of Trastuzumab Resistance through Engagement of Immune Effector Cells and Stimulation of IFNγ Secretion. Cancer Lett. 2018, 430, 47–56. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-Line Pembrolizumab and Trastuzumab in HER2-Positive Oesophageal, Gastric, or Gastro-Oesophageal Junction Cancer: An Open-Label, Single-Arm, Phase 2 Trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Maron, S.; Chou, J.F.; Gabler, A.R.; Simmons, M.Z.; Momtaz, P.; Shcherba, M.; Ku, G.Y.; Won, E.; Sanchez-Vega, F.; et al. First-Line Pembrolizumab (P), Trastuzumab (T), Capecitabine (C) and Oxaliplatin (O) in HER2-Positive Metastatic Esophagogastric Adenocarcinoma. Ann. Oncol. 2019, 30, v313. [Google Scholar] [CrossRef]
- Rha, S.Y.; Lee, C.-K.; Kim, H.S.; Kang, B.; Jung, M.; Bae, W.K.; Koo, D.-H.; Shin, S.-J.; Jeung, H.-C.; Zang, D.Y.; et al. Targeting HER2 in Combination with Anti-PD-1 and Chemotherapy Confers a Significant Tumor Shrinkage of Gastric Cancer: A Multi-Institutional Phase Ib/II Trial of First-Line Triplet Regimen (Pembrolizumab, Trastuzumab, Chemotherapy) for HER2-Positive Advanced Gastric Cancer (AGC). J. Clin. Oncol. 2020, 38, 3081. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 Trial of Dual PD-1 and HER2 Blockade in HER2-Positive Gastric Cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.P.; Yanez, P.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.; et al. Pembrolizumab plus Trastuzumab and Chemotherapy for HER2-Positive Gastric or Gastro-Oesophageal Junction Adenocarcinoma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. Lancet 2023, 402, 2197–2208. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.-P.; Yanez Weber, P.E.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.V.; et al. 1400O Final Overall Survival for the Phase III, KEYNOTE-811 Study of Pembrolizumab plus Trastuzumab and Chemotherapy for HER2+ Advanced, Unresectable or Metastatic G/GEJ Adenocarcinoma. Ann. Oncol. 2024, 35, S877–S878. [Google Scholar] [CrossRef]
- KEYTRUDA® (Pembrolizumab) Plus Trastuzumab and Chemotherapy Met Primary Endpoint of Progression-Free Survival as First-Line Treatment in Patients With HER2-Positive Advanced Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma. Available online: https://www.merck.com/news/keytruda-pembrolizumab-plus-trastuzumab-and-chemotherapy-met-primary-endpoint-of-progression-free-survival-as-first-line-treatment-in-patients-with-her2-positive-advanced-gastric-or-gastroesop/ (accessed on 15 August 2024).
- Catenacci, D.V.T.; Kang, Y.-K.; Yoon, H.H.; Shim, B.Y.; Kim, S.T.; Oh, D.-Y.; Spira, A.I.; Ulahannan, S.V.; Avery, E.J.; Boland, P.M.; et al. Margetuximab with Retifanlimab as First-Line Therapy in HER2+/PD-L1+ Unresectable or Metastatic Gastroesophageal Adenocarcinoma: MAHOGANY Cohort A. ESMO Open 2022, 7, 100563. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Shen, L.; Elimova, E.; Ku, G.; Liu, T.; Shitara, K.; Lin, X.; Boyken, L.; Li, H.; Grim, J.; et al. HERIZON-GEA-01: Zanidatamab + Chemo ± Tislelizumab for 1L Treatment of HER2-Positive Gastroesophageal Adenocarcinoma. Future Oncol. 2022, 18, 3255–3266. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Nakayama, I.; Fukuoka, S.; Shoji, H.; Furuta, M.; Minashi, K.; Hara, H.; Wakabayashi, M.; Komura, Y.; Sato, A.; et al. 500TiP An Open Label Phase Ib/II Study of Trastuzumab Deruxtecan (T-DXd) in Combination with Nivolumab and CAPOX for Patients with HER2-Low Expressing Gastroesophageal Adenocarcinoma (EPOC2203). Ann. Oncol. 2024, 35, S199. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Wang, A.; Wei, J.; Peng, Z.; Wang, X.; Zhou, J.; Qi, C.; Liu, D.; Li, J.; et al. Disitamab Vedotin (RC48) plus Toripalimab for HER2-Expressing Advanced Gastric or Gastroesophageal Junction and Other Solid Tumours: A Multicentre, Open Label, Dose Escalation and Expansion Phase 1 Trial. EClinicalMedicine 2024, 68, 102415. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Xu, W.; Guo, Y.; Gao, X.; Lv, H.; Chen, B.; Wang, J.; Liu, Y.; Zhao, J.; Wang, S.; et al. Immune Checkpoint Inhibitors Enhanced the Antitumor Efficacy of Disitamab Vedotin for Patients with HER2-Positive or HER2-Low Advanced or Metastatic Gastric Cancer: A Multicenter Real-World Study. BMC Cancer 2023, 23, 1239. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; van Laarhoven, H.W.M.; Rha, S.Y.; Kozlov, V.; Oh, D.-Y.; Gravina, A.; Rapatoni, L.; Shoji, H.; Hofheinz, R.D.; Chen, L.-T.; et al. 1401O Trastuzumab Deruxtecan (T-DXd) Monotherapy and Combinations in Patients (Pts) with Advanced/Metastatic HER2-Positive (HER2+) Esophageal, Gastric or Gastroesophageal Junction Adenocarcinoma (GEJA): DESTINY-Gastric03 (DG-03). Ann. Oncol. 2024, 35, S878. [Google Scholar] [CrossRef]
- Stein, A.; Paschold, L.; Tintelnot, J.; Goekkurt, E.; Henkes, S.-S.; Simnica, D.; Schultheiss, C.; Willscher, E.; Bauer, M.; Wickenhauser, C.; et al. Efficacy of Ipilimumab vs FOLFOX in Combination With Nivolumab and Trastuzumab in Patients With Previously Untreated ERBB2-Positive Esophagogastric Adenocarcinoma: The AIO INTEGA Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1150–1158. [Google Scholar] [CrossRef]
- Tintelnot, J.; Stein, A.; Paschold, L.; Goekkurt, E.; Schultheiß, C.; Thuss-Patience, P.C.; Lorenzen, S.; Ettrich, T.J.; Riera Knorrenschild, J.; Jacobasch, L.; et al. Final Survival Results of Ipilimumab or FOLFOX in Combination with Nivolumab and Trastuzumab in Previously Untreated HER2 Positive Esophago Gastric Adenocarcinoma: The Randomized AIO INTEGA Trial. J. Clin. Oncol. 2023, 41, 4026. [Google Scholar] [CrossRef]
- Shen, L.; Gong, J.; Niu, Z.; Zhao, R.; Chen, L.; Liu, L.; Deng, T.; Lu, L.; Zhang, Y.; Li, Z.; et al. 1210P The Preliminary Efficacy and Safety of KN026 Combined with KN046 Treatment in HER2-Positive Locally Advanced Unresectable or Metastatic Gastric/Gastroesophageal Junction Cancer without Prior Systemic Treatment in a Phase II Study. Ann. Oncol. 2022, 33, S1102. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Raoufmoghaddam, S.; Sztachelska, M.; Winter, M.; Das, S. (Nanu) Phase 1b/2, Open-Label Dose-Escalation and -Expansion Study Evaluating Trastuzumab Deruxtecan (T-DXd) Monotherapy and Combinations in Patients (Pts) with HER2+ and HER2-Low Gastric Cancer (GC): DESTINY-Gastric03 (DG-03). J. Clin. Oncol. 2024, 42, TPS424. [Google Scholar] [CrossRef]
- Jia, K.; Chen, Y.; Sun, Y.; Hu, Y.; Jiao, L.; Ma, J.; Yuan, J.; Qi, C.; Li, Y.; Gong, J.; et al. Multiplex Immunohistochemistry Defines the Tumor Immune Microenvironment and Immunotherapeutic Outcome in CLDN18.2-Positive Gastric Cancer. BMC Med. 2022, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Lee, K.-W.; Shitara, K.; Metges, J.-P.; Lonardi, S.; Ilson, D.H.; Fazio, N.; Kim, T.Y.; Bai, L.-Y.; Moran, D.; et al. ILUSTRO: Phase II Multicohort Trial of Zolbetuximab in Patients with Advanced or Metastatic Claudin 18.2–Positive Gastric or Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2023, 29, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Yamaguchi, K.; Shoji, H.; Matsangou, M.; Bhattacharya, P.P.; Park, J.W.; Klempner, S.J. Phase 2 Trial of Zolbetuximab in Combination with mFOLFOX6 and Nivolumab in Patients with Advanced or Metastatic Claudin 18.2-Positive, HER2-Negative Gastric or Gastroesophageal Junction Adenocarcinomas. J. Clin. Oncol. 2023, 41, TPS4173. [Google Scholar] [CrossRef]
- Shen, L.; Guo, Z.; Zhang, J.; Guo, W.; Sun, M.; Xu, N.; Qi, C.; Zhu, X.; Zhang, L.; Xu, L.; et al. 1419P Osemitamab (TST001) plus Nivolumab and CAPOX as the First-Line Therapy for the Patients with Advanced G/GEJ Cancer (TranStar102). Ann. Oncol. 2024, 35, S885. [Google Scholar] [CrossRef]
- Peng, Z.; Shen, L.; He, Y.; Chen, J.; Hickingbottom, B.; Lu, J. A Phase Ib/II Study of ASKB589 (Anti-Claudin 18.2 [CLDN18.2] Monoclonal Antibody) Combined with CAPOX and PD-1 Inhibitor as First-Line Treatment for Locally Advanced, Relapsed and Metastatic Gastric/Gastro-Esophageal Junction (G/GEJ) Adenocarcinoma. J. Clin. Oncol. 2024, 42, 317. [Google Scholar] [CrossRef]
- Study Details|ASKB589 in Combination With CAPOX and PD-1 Inhibitor in Patients With Advanced or Metastatic GC/GEJ Adenocarcinoma|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06206733?cond=NCT06206733&rank=1 (accessed on 11 January 2025).
- Study Details|Novel Combinations in Participants With Locally Advanced Unresectable or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05702229 (accessed on 19 August 2024).
- Yk, W.; Gong, J.; Sun, Y.; Zhang, J.; Ni, S.; Hou, J.; Chen, X.; Wang, Y.; Yu, Q.; Qu, X.; et al. Interim Results of a First-in-Human Phase 1 Study of Q-1802, a CLDN18.2/PD-L1 bsABs, in Patients with Relapsed or Refractory Solid Tumors. J. Clin. Oncol. 2023, 41, 382. [Google Scholar] [CrossRef]
- Leone, A.G.; Mai, A.S.; Fong, K.Y.; Yap, D.W.T.; Kato, K.; Smyth, E.; Moehler, M.; Seong, J.T.C.; Sundar, R.; Zhao, J.J.; et al. Immune Checkpoint Inhibitors in Advanced Gastroesophageal Adenocarcinoma: A Series of Patient-Level Meta-Analyses in Different Programmed Death-Ligand 1 Subgroups. ESMO Open 2024, 9, 103962. [Google Scholar] [CrossRef]
- Rivera Herrero, F.; Oh, D.-Y.; Shitara, K.; Chen, J.-S.; Jiang, J.; Liu, S.; Dong, Z.; Zhu, Q.; Zhang, X.; Umiker, B.; et al. 1422P First-Line Rilvegostomig (Rilve) + Chemotherapy (CTx) in Patients (Pts) with HER2-Negative (HER2–) Locally Advanced Unresectable or Metastatic Gastric Cancers: First Report of GEMINI-Gastric Sub Study 2. Ann. Oncol. 2024, 35, S887. [Google Scholar] [CrossRef]
- QureBio Ltd. A Phase I/II Clinical Trial to Evaluate the Safety Tolerance and Initial Efficacy of Q-1802 Combined With Standard Treatment in Patients With Gastrointestinal Tumors; QureBio Ltd.: Shanghai, China, 2023. [Google Scholar]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus Paclitaxel versus Placebo plus Paclitaxel in Patients with Previously Treated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (RAINBOW): A Double-Blind, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Muro, K.; Oh, S.C.; Shimada, Y.; Lee, K.-W.; Yen, C.-J.; Chao, Y.; Cho, J.Y.; Cheng, R.; Carlesi, R.; Chandrawansa, K.; et al. Subgroup Analysis of East Asians in RAINBOW: A Phase 3 Trial of Ramucirumab plus Paclitaxel for Advanced Gastric Cancer. J. Gastroenterol. Hepatol. 2016, 31, 581–589. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab Monotherapy for Previously Treated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (REGARD): An International, Randomised, Multicentre, Placebo-Controlled, Phase 3 Trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in Combination with Chemotherapy as First-Line Therapy in Advanced Gastric Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III Study. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.-E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with Cisplatin and Fluoropyrimidine as First-Line Therapy in Patients with Metastatic Gastric or Junctional Adenocarcinoma (RAINFALL): A Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Pavlakis, N.; Shitara, K.; Sjoquist, K.M.; Martin, A.J.; Jaworski, A.; Yip, S.; Bang, Y.-J.; Alcindor, T.; O’Callaghan, C.J.; Tebbutt, N.C.; et al. INTEGRATE IIa: A Randomised, Double-Blind, Phase III Study of Regorafenib versus Placebo in Refractory Advanced Gastro-Oesophageal Cancer (AGOC)—A Study Led by the Australasian Gastro-Intestinal Trials Group (AGITG). J. Clin. Oncol. 2023, 41, LBA294. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Ryu, M.-H.; Di Bartolomeo, M.; Chau, I.; Yoon, H.; Kim, J.G.; Lee, K.-W.; Oh, S.C.; Takashima, A.; Kryzhanivska, A.; et al. Rivoceranib, a VEGFR-2 Inhibitor, Monotherapy in Previously Treated Patients with Advanced or Metastatic Gastric or Gastroesophageal Junction Cancer (ANGEL Study): An International, Randomized, Placebo-Controlled, Phase 3 Trial. Gastric Cancer 2024, 27, 375–386. [Google Scholar] [CrossRef]
- Li, J.; Qin, S.; Xu, J.; Xiong, J.; Wu, C.; Bai, Y.; Liu, W.; Tong, J.; Liu, Y.; Xu, R.; et al. Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Apatinib in Patients With Chemotherapy-Refractory Advanced or Metastatic Adenocarcinoma of the Stomach or Gastroesophageal Junction. J. Clin. Oncol. 2016, 34, 1448–1454. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.-X.; Shen, L.; Li, J.; Huang, J.; Su, W.-G.; Zhang, D.-S.; Xu, R.-H. A Phase Ib/II Study of Fruquintinib in Combination with Paclitaxel as the Second-Line Therapy for Advanced Gastric Cancer. Cancer Commun. 2023, 43, 150–153. [Google Scholar] [CrossRef]
- Wang, F.; Shen, L.; Guo, W.; Liu, T.; Li, J.; Qin, S.; Bai, Y.; Chen, Z.; Wang, J.; Pan, Y.; et al. Fruquintinib plus Paclitaxel versus Placebo plus Paclitaxel for Gastric or Gastroesophageal Junction Adenocarcinoma: The Randomized Phase 3 FRUTIGA Trial. Nat. Med. 2024, 30, 2189–2198. [Google Scholar] [CrossRef]
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; et al. Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603). J. Clin. Oncol. 2020, 38, 2053–2061. [Google Scholar] [CrossRef]
- Pavlakis, N.; Shitara, K.; Sjoquist, K.M.; Martin, A.J.; Jaworski, A.; Yip, S.; Oh, D.-Y.; Moehler, M.H.; Bekaii-Saab, T.S.; Simes, J.; et al. INTEGRATE IIb: A Randomized Phase III Open Label Study of Regorafenib + Nivolumab versus Standard Chemotherapy in Refractory Advanced Gastroesophageal Cancer (AGOC). J. Clin. Oncol. 2022, 40, TPS366. [Google Scholar] [CrossRef]
- Cytryn, S.L.; Moy, R.H.; Cowzer, D.; Shah, R.H.; Chou, J.F.; Joshi, S.S.; Ku, G.Y.; Maron, S.B.; Desai, A.; Yang, J.; et al. First-Line Regorafenib with Nivolumab and Chemotherapy in Advanced Oesophageal, Gastric, or Gastro-Oesophageal Junction Cancer in the USA: A Single-Arm, Single-Centre, Phase 2 Trial. Lancet Oncol. 2023, 24, 1073–1082. [Google Scholar] [CrossRef]
- Kawazoe, A.; Fukuoka, S.; Nakamura, Y.; Kuboki, Y.; Wakabayashi, M.; Nomura, S.; Mikamoto, Y.; Shima, H.; Fujishiro, N.; Higuchi, T.; et al. Lenvatinib plus Pembrolizumab in Patients with Advanced Gastric Cancer in the First-Line or Second-Line Setting (EPOC1706): An Open-Label, Single-Arm, Phase 2 Trial. Lancet Oncol. 2020, 21, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Wang, Y.; Jia, R.; Wang, Z.; Si, H.; Han, L.; Gou, M.; Tan, Z.; Han, L.; Jiang, D.-Z. 1416P First-Line Tislelizumab Combined with Bevacizumab and CAPOX for Metastatic Gastroesophageal Adenocarcinoma (mGEA) with PD-L1 CPS<5: Updated Results of a Phase II, Prospective, Single-Arm Study. Ann. Oncol. 2024, 35, S884. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Chen, X.; Xu, T.; Tian, Y.; Wang, D.; Guo, F.; Wang, K.; Jin, G.; Li, X.; et al. First-Line Camrelizumab (a PD-1 Inhibitor) plus Apatinib (an VEGFR-2 Inhibitor) and Chemotherapy for Advanced Gastric Cancer (SPACE): A Phase 1 Study. Sig Transduct. Target. Ther. 2024, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Wang, J.; Zhu, M.; Bai, Z.; Zhao, B.; Zhang, J.; Yin, J.; Yang, X.; Liu, Z.; Zhang, Z.; et al. Camrelizumab Combined with Apatinib and S-1 as Second-Line Treatment for Patients with Advanced Gastric or Gastroesophageal Junction Adenocarcinoma: A Phase 2, Single-Arm, Prospective Study. Cancer Immunol. Immunother. 2022, 71, 2597–2608. [Google Scholar] [CrossRef]
- Peng, Z.; Wei, J.; Wang, F.; Ying, J.; Deng, Y.; Gu, K.; Cheng, Y.; Yuan, X.; Xiao, J.; Tai, Y.; et al. Camrelizumab Combined with Chemotherapy Followed by Camrelizumab plus Apatinib as First-Line Therapy for Advanced Gastric or Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2021, 27, 3069–3078. [Google Scholar] [CrossRef]
- Li, L.; Jiang, X.; Zhang, Q.; Dong, X.; Gao, Y.; He, Y.; Qiao, H.; Xie, F.; Xie, X.; Sun, X. Neuropilin-1 Is Associated with Clinicopathology of Gastric Cancer and Contributes to Cell Proliferation and Migration as Multifunctional Co-Receptors. J. Exp. Clin. Cancer Res. 2016, 35, 16. [Google Scholar] [CrossRef]
- Uronis, H.E.; Bendell, J.C.; Altomare, I.; Blobe, G.C.; Hsu, S.D.; Morse, M.A.; Pang, H.; Zafar, S.Y.; Conkling, P.; Favaro, J.; et al. A Phase II Study of Capecitabine, Oxaliplatin, and Bevacizumab in the Treatment of Metastatic Esophagogastric Adenocarcinomas. Oncologist 2013, 18, 271–272. [Google Scholar] [CrossRef]
- Nagatsuma, A.K.; Aizawa, M.; Kuwata, T.; Doi, T.; Ohtsu, A.; Fujii, H.; Ochiai, A. Expression Profiles of HER2, EGFR, MET and FGFR2 in a Large Cohort of Patients with Gastric Adenocarcinoma. Gastric Cancer 2015, 18, 227–238. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Lin, L.-S.; DiCarlo, B.; Dao, K.M.; Patel, R.; Park, D.J.; Wang, H.-J.; Elashoff, R.; Ryba, N.; Hecht, J.R. Phase II Trial of Modified FOLFOX6 and Erlotinib in Patients with Metastatic or Advanced Adenocarcinoma of the Oesophagus and Gastro-Oesophageal Junction. Br. J. Cancer 2011, 105, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Di Fabio, F.; Barone, C.; Siena, S.; Falcone, A.; Cascinu, S.; Rojas Llimpe, F.L.; Stella, G.; Schinzari, G.; Artale, S.; et al. Phase II Study of Cetuximab in Combination with Cisplatin and Docetaxel in Patients with Untreated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (DOCETUX Study). Br. J. Cancer 2009, 101, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Luber, B.; Lorenzen, S.; Hegewisch-Becker, S.; Folprecht, G.; Wöll, E.; Decker, T.; Endlicher, E.; Röthling, N.; Schuster, T.; et al. Cetuximab plus Oxaliplatin/Leucovorin/5-Fluorouracil in First-Line Metastatic Gastric Cancer: A Phase II Study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br. J. Cancer 2010, 102, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Okines, C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; et al. Epirubicin, Oxaliplatin, and Capecitabine with or without Panitumumab for Patients with Previously Untreated Advanced Oesophagogastric Cancer (REAL3): A Randomised, Open-Label Phase 3 Trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef]
- Lordick, F.; Kang, Y.-K.; Chung, H.-C.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.; Moiseyenko, V.M.; Gorbunova, V.; et al. Capecitabine and Cisplatin with or without Cetuximab for Patients with Previously Untreated Advanced Gastric Cancer (EXPAND): A Randomised, Open-Label Phase 3 Trial. Lancet Oncol. 2013, 14, 490–499. [Google Scholar] [CrossRef]
- Dutton, S.J.; Ferry, D.R.; Blazeby, J.M.; Abbas, H.; Dahle-Smith, A.; Mansoor, W.; Thompson, J.; Harrison, M.; Chatterjee, A.; Falk, S.; et al. Gefitinib for Oesophageal Cancer Progressing after Chemotherapy (COG): A Phase 3, Multicentre, Double-Blind, Placebo-Controlled Randomised Trial. Lancet Oncol. 2014, 15, 894–904. [Google Scholar] [CrossRef]
- Lordick, F.; Kang, Y.-K.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.P.; Volovat, C.D.; Moiseyenko, V.; Sawaki, A.; Park, J.O.; et al. Clinical Outcome According to Tumor HER2 Status and EGFR Expression in Advanced Gastric Cancer Patients from the EXPAND Study. J. Clin. Oncol. 2013, 31, 4021. [Google Scholar] [CrossRef]
- Smyth, E.C.; Vlachogiannis, G.; Hedayat, S.; Harbery, A.; Hulkki-Wilson, S.; Salati, M.; Kouvelakis, K.; Fernandez-Mateos, J.; Cresswell, G.D.; Fontana, E.; et al. EGFR Amplification and Outcome in a Randomised Phase III Trial of Chemotherapy Alone or Chemotherapy plus Panitumumab for Advanced Gastro-Oesophageal Cancers. Gut 2021, 70, 1632–1641. [Google Scholar] [CrossRef]
- Petty, R.D.; Dahle-Smith, A.; Stevenson, D.A.J.; Osborne, A.; Massie, D.; Clark, C.; Murray, G.I.; Dutton, S.J.; Roberts, C.; Chong, I.Y.; et al. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer. J. Clin. Oncol. 2017, 35, 2279–2287. [Google Scholar] [CrossRef]
- Maron, S.B.; Alpert, L.; Kwak, H.A.; Lomnicki, S.; Chase, L.; Xu, D.; O’Day, E.; Nagy, R.J.; Lanman, R.B.; Cecchi, F.; et al. Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 696–713. [Google Scholar] [CrossRef]
- Lennerz, J.K.; Kwak, E.L.; Ackerman, A.; Michael, M.; Fox, S.B.; Bergethon, K.; Lauwers, G.Y.; Christensen, J.G.; Wilner, K.D.; Haber, D.A.; et al. MET Amplification Identifies a Small and Aggressive Subgroup of Esophagogastric Adenocarcinoma with Evidence of Responsiveness to Crizotinib. J. Clin. Oncol. 2011, 29, 4803–4810. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Tang, L.H.; Coit, D.G.; Kelsen, D.P.; Francone, T.D.; Weiser, M.R.; Jhanwar, S.C.; Shah, M.A. MET Expression and Amplification in Patients with Localized Gastric Cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.T.; Kim, K.; Lee, H.; Kozarewa, I.; Mortimer, P.G.S.; Odegaard, J.I.; Harrington, E.A.; Lee, J.; Lee, T.; et al. Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: The VIKTORY Umbrella Trial. Cancer Discov. 2019, 9, 1388–1405. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.-E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Bondarenko, I.; et al. Rilotumumab plus Epirubicin, Cisplatin, and Capecitabine as First-Line Therapy in Advanced MET-Positive Gastric or Gastro-Oesophageal Junction Cancer (RILOMET-1): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2017, 18, 1467–1482. [Google Scholar] [CrossRef]
- Doi, T.; Kang, Y.-K.; Muro, K.; Jiang, Y.; Jain, R.K.; Lizambri, R. A Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study of Rilotumumab in Combination with Cisplatin and Capecitabine (CX) as First-Line Therapy for Asian Patients (Pts) with Advanced MET-Positive Gastric or Gastroesophageal Junction (G/GEJ) Adenocarcinoma: The RILOMET-2 Trial. J. Clin. Oncol. 2015, 33, TPS226. [Google Scholar] [CrossRef]
- Shah, M.A.; Cho, J.-Y.; Tan, I.B.; Tebbutt, N.C.; Yen, C.-J.; Kang, A.; Shames, D.S.; Bu, L.; Kang, Y.-K. A Randomized Phase II Study of FOLFOX With or Without the MET Inhibitor Onartuzumab in Advanced Adenocarcinoma of the Stomach and Gastroesophageal Junction. Oncologist 2016, 21, 1085–1090. [Google Scholar] [CrossRef]
- Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.T.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.-C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; et al. Phase II Study Evaluating 2 Dosing Schedules of Oral Foretinib (GSK1363089), cMET/VEGFR2 Inhibitor, in Patients with Metastatic Gastric Cancer. PLoS ONE 2013, 8, e54014. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Muro, K.; Ryu, M.-H.; Yasui, H.; Nishina, T.; Ryoo, B.-Y.; Kamiya, Y.; Akinaga, S.; Boku, N. A Phase II Trial of a Selective C-Met Inhibitor Tivantinib (ARQ 197) Monotherapy as a Second- or Third-Line Therapy in the Patients with Metastatic Gastric Cancer. Investig. New Drugs 2014, 32, 355–361. [Google Scholar] [CrossRef]
- Strickler, J.H.; Raimbourg, J.; Ghiringhelli, F.; Cohen, J.E.; Kitagawa, C.; Sharma, M.R.; Lee, K.H.; De Miguel, M.; Hunter, Z.N.; Burns, M.; et al. 1439P ABBV-400, a c-Met Protein–Targeting Antibody-Drug Conjugate (ADC), in Patients (Pts) with Advanced Gastric/Gastroesophageal Junction Adenocarcinoma (GEA): Results from a Phase I Study. Ann. Oncol. 2024, 35, S895–S896. [Google Scholar] [CrossRef]
- Kotani, D.; Yamaguchi, K.; Kato, K.; Hara, H.; Miura, A.; Satoh, T.; Komine, K.; Kunisaki, C.; Yabusaki, H.; Hagiwara, A.; et al. A Phase 2, Open-Label Study of Amivantamab in Patients with Previously Treated Advanced or Metastatic Gastric or Esophageal Cancer. J. Clin. Oncol. 2024, 42, 363. [Google Scholar] [CrossRef]
- Camargo, M.C.; Kim, W.-H.; Chiaravalli, A.M.; Kim, K.-M.; Corvalan, A.H.; Matsuo, K.; Yu, J.; Sung, J.J.Y.; Herrera-Goepfert, R.; Meneses-Gonzalez, F.; et al. Improved Survival of Gastric Cancer with Tumour Epstein–Barr Virus Positivity: An International Pooled Analysis. Gut 2014, 63, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xie, T.; Wang, Z.; Tong, S.; Zhao, X.; Zhao, F.; Cai, J.; Wei, X.; Peng, Z.; Shen, L. Efficacy and Predictive Biomarkers of Immunotherapy in Epstein-Barr Virus-Associated Gastric Cancer. J. Immunother. Cancer 2022, 10, e004080. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Liu, Y.; Zhang, Z.; Zhang, X.; Gong, J.; Qi, C.; Li, J.; Shen, L.; Peng, Z. Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. J. Immunother. 2020, 43, 139. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-T.; Guan, W.-L.; Zhao, Q.; Wang, D.-S.; Lu, S.-X.; He, C.-Y.; Chen, S.-Z.; Wang, F.-H.; Li, Y.-H.; Zhou, Z.-W.; et al. PD-1 Antibody Camrelizumab for Epstein-Barr Virus-Positive Metastatic Gastric Cancer: A Single-Arm, Open-Label, Phase 2 Trial. Am. J. Cancer Res. 2021, 11, 5006. [Google Scholar]
- Mishima, S.; Kawazoe, A.; Nakamura, Y.; Sasaki, A.; Kotani, D.; Kuboki, Y.; Bando, H.; Kojima, T.; Doi, T.; Ohtsu, A.; et al. Clinicopathological and Molecular Features of Responders to Nivolumab for Patients with Advanced Gastric Cancer. J. Immunother. Cancer 2019, 7, 24. [Google Scholar] [CrossRef]
- Wang, F.; Wei, X.L.; Wang, F.H.; Xu, N.; Shen, L.; Dai, G.H.; Yuan, X.L.; Chen, Y.; Yang, S.J.; Shi, J.H.; et al. Safety, Efficacy and Tumor Mutational Burden as a Biomarker of Overall Survival Benefit in Chemo-Refractory Gastric Cancer Treated with Toripalimab, a PD-1 Antibody in Phase Ib/II Clinical Trial NCT02915432. Ann. Oncol. 2019, 30, 1479–1486. [Google Scholar] [CrossRef]
- Li, G. Efficacy and Safety of Neoadjuvant Immunotherapy and Chemotherapy for Locally Advanced Esophagogastric Junction and Gastric Cancer: A Open-Label, Phase 2 Randomised Controlled Trial (NICE Trial); QureBio Ltd.: Shanghai, China, 2022. [Google Scholar]
- Fouchardiere, C.d.l.; Zaanan, A.; Cohen, R.; Sourd, S.M.L.; Tougeron, D.; Soularue, E.; Dubreuil, O.; Williet, N.; Samalin-Scalzi, E.; Piessen, G.; et al. 1448P IMHOTEP Phase II Trial of Neoadjuvant Pembrolizumab in dMMR/MSI Localized Cancers: Results of the Digestive Non-Colorectal Cancer Cohorts. Ann. Oncol. 2024, 35, S899–S900. [Google Scholar] [CrossRef]
- Helsten, T.; Schwaederle, M.; Kurzrock, R. Fibroblast Growth Factor Receptor Signaling in Hereditary and Neoplastic Disease: Biologic and Clinical Implications. Cancer Metastasis Rev. 2015, 34, 479–496. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.-K.; Qin, S.; Yamaguchi, K.; Kim, I.-H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab in Patients with FGFR2b-Selected Gastric or Gastro-Oesophageal Junction Adenocarcinoma (FIGHT): A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef]
- Sato, S.; Rhodes, S.L.; Aoki, Y.; Nakayama, I.; Hashimoto, T.; Finger, E.; Chang, C.-H.; Nakamura, Y.; Kawazoe, A.; Saori, M.; et al. 1420P Fibroblast Growth Factor Receptor 2 Isoform IIIb (FGFR2b) Protein Overexpression and Biomarker Overlap in Patients with Advanced Gastric or Gastroesophageal Junction Cancer (GC/GEJC). Ann. Oncol. 2024, 35, S885–S886. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Bahleda, R.; Hierro, C.; Sanson, M.; Bridgewater, J.; Arkenau, H.-T.; Tran, B.; Kelley, R.K.; Park, J.O.; Javle, M.; et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2022, 12, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Bahleda, R.; Meric-Bernstam, F.; Goyal, L.; Tran, B.; He, Y.; Yamamiya, I.; Benhadji, K.A.; Matos, I.; Arkenau, H.-T. Phase I, First-in-Human Study of Futibatinib, a Highly Selective, Irreversible FGFR1–4 Inhibitor in Patients with Advanced Solid Tumors. Ann. Oncol. 2020, 31, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Rasco, D.; Lee, J.; Rha, S.Y.; Lee, K.-W.; Bang, Y.J.; Bendell, J.; Enzinger, P.; Marina, N.; Xiang, H.; et al. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J. Clin. Oncol. 2020, 38, 2418–2426. [Google Scholar] [CrossRef]
- Study Details|Bemarituzumab or Placebo Plus Chemotherapy in Gastric Cancers With Fibroblast Growth Factor Receptor 2b (FGFR2b) Overexpression|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05052801 (accessed on 17 August 2024).
- Study Details|Bemarituzumab Plus Chemotherapy and Nivolumab Versus Chemotherapy and Nivolumab for FGFR2b Overexpressed Untreated Advanced Gastric and Gastroesophageal Junction Cancer.|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05111626 (accessed on 17 August 2024).
- He, W.; Zhang, H.; Han, F.; Chen, X.; Lin, R.; Wang, W.; Qiu, H.; Zhuang, Z.; Liao, Q.; Zhang, W.; et al. CD155T/TIGIT Signaling Regulates CD8+ T-Cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res. 2017, 77, 6375–6388. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, E.; Zhu, C.; Zhao, W.; Wang, C.; Zhang, Z.; Zhao, G. TIGIT and PD-1 May Serve as Potential Prognostic Biomarkers for Gastric Cancer. Immunobiology 2020, 225, 151915. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Wang, Z.; Zhang, J.; Zhou, R. Co-Inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol. Cancer 2023, 22, 93. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Oh, D.-Y.; Pelster, M.; Wainberg, Z.A.; Sison, E.A.R.; Scott, J.R.; Ronayne, J.; Wishengrad, D.; Rhee, J.; Nuyten, D.S.A.; et al. EDGE-Gastric Arm A1: Phase 2 Study of Domvanalimab, Zimberelimab, and FOLFOX in First-Line (1L) Advanced Gastroesophageal Cancer. J. Clin. Oncol. 2023, 41, 433248. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, G.-W.; Shim, B.Y.; Spigel, D.R.; Shiah, H.-S.; Frentzas, S.; Yoon, H.H.; Wang, F.; Sun, M.; Clay, T.D.; et al. AdvanTIG-105: A Phase 1b Dose-Expansion Study of Ociperlimab (OCI) + Tislelizumab (TIS) with Chemotherapy (Chemo) in Patients (Pts) with Stage IV Gastric/Gastroesophageal Adenocarcinoma (GC/GEJC). J. Clin. Oncol. 2023, 41, 4028. [Google Scholar] [CrossRef]
- Klempner, S.J.; Shitara, K.; Sison, A.; Scott, J.; Wishengrad, D.; Ronayne, J.; Rhee, J.; Mitra, S.; Nuyten, D.S.A.; Janjigian, Y.Y.; et al. STAR-221: A Randomized, Open-Label, Multicenter, Phase 3 Trial of Domvanalimab, Zimberelimab, and Chemotherapy versus Nivolumab and Chemotherapy in Previously Untreated, Locally Advanced, Unresectable or Metastatic Gastric, Gastroesophageal Junction, and Esophageal Adenocarcinoma. J. Clin. Oncol. 2023, 41, TPS4206. [Google Scholar] [CrossRef]
- Haas, M.S.; Kagey, M.H.; Heath, H.; Schuerpf, F.; Rottman, J.B.; Newman, W. mDKN-01, a Novel Anti-DKK1 mAb, Enhances Innate Immune Responses in the Tumor Microenvironment. Mol. Cancer Res. 2021, 19, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Bendell, J.C.; Villaflor, V.M.; Tenner, L.L.; Stein, S.M.; Rottman, J.B.; Naik, G.S.; Sirard, C.A.; Kagey, M.H.; Chaney, M.F.; et al. Safety, Efficacy, and Biomarker Results from a Phase Ib Study of the Anti-DKK1 Antibody DKN-01 in Combination with Pembrolizumab in Advanced Esophagogastric Cancers. Mol. Cancer Ther. 2021, 20, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-W.; Moehler, M.H.; Cunningham, D.; Wainberg, Z.A.; Uronis, H.E.; Oh, D.-Y.; Kim, I.-H.; Shim, B.Y.; Sym, S.J.; Altura, R.A.; et al. Trial in Progress: A Phase 2, Multicenter, Open-Label Study of DKN-01 in Combination with Tislelizumab and Chemotherapy as 1L Therapy in Patients with Unresectable, Locally Advanced or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma (G/GEJ.; DisTinGuish). J. Clin. Oncol. 2023, 41, TPS484. [Google Scholar] [CrossRef]
- Sonbol, B.B.; Wainberg, Z.A.; Uronis, H.E.; Chiu, V.K.; Scott, A.J.; Iqbal, S.; Tejani, M.A.; Stilian, M.C.; Thoma, M.; Kagey, M.; et al. A Phase 2 Study (DisTinGuish) of DKN-01 in Combination with Tislelizumab + Chemotherapy as First-Line (1L) Therapy in Patients with Advanced Gastric or GEJ Adenocarcinoma (GEA). J. Clin. Oncol. 2023, 41, 4027. [Google Scholar] [CrossRef]
- Platin-Fluoroprimidine Doublet ChT (a) [I, A]|ESMO. Available online: https://www.esmo.org/living-guidelines/esmo-gastric-cancer-living-guideline/metastatic-disease/metastatic-disease/first-line-her2-negative/advanced-metastatic-unresectable-oesophageal-oesophagogastric-junction-or-gastric-adenocarcinoma-in-her2-negative/1st-line-treatment/platin-fluoroprimidine-doublet-cht-a-i-a/pd-l1-positive-cps-1-escat-i-a-b (accessed on 11 January 2025).
- Kim, H.-D.; Lee, C.-K.; Cho, S.I.; Hwang, S.; Song, S.; Kay, H.Y.; Ock, C.-Y.; Park, Y.S.; Jung, M.; Ryu, M.H. 1411P AI-Powered Immune Phenotype Predicts Favorable Outcomes of Nivolumab (Niv) plus Chemotherapy (Chemo) in Advanced Fgastric Cancer (AGC): A Multi-Center Real-World Data Analysis. Ann. Oncol. 2024, 35, S882. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Sun, Y.; Tang, L.; Zhang, L.; Hu, Y.; He, M.; Li, Z.; Cheng, S.; Yuan, J.; et al. Predicting Gastric Cancer Response to Anti-HER2 Therapy or Anti-HER2 Combined Immunotherapy Based on Multi-Modal Data. Sig. Transduct. Target. Ther. 2024, 9, 222. [Google Scholar] [CrossRef]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus Chemotherapy or Ipilimumab in Gastro-Oesophageal Cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef]
- Upadhaya, S.; Neftelino, S.T.; Hodge, J.P.; Oliva, C.; Campbell, J.R.; Yu, J.X. Combinations Take Centre Stage in PD1/PDL1 Inhibitor Clinical Trials. Nat. Rev. Drug Discov. 2020, 20, 168–169. [Google Scholar] [CrossRef]
Name | National Clinical Trial Number | Phase | N | Target | Line | Treatment | Primary Endpoint | Recruitment Status | Outcome | References |
---|---|---|---|---|---|---|---|---|---|---|
KEYNOTE-811 | NCT03615326 | III | 698 | HER2 + PD-1 | 1st line | Trastuzumab + FP + platinum-based CHT + pembrolizumab vs. placebo | PFS, OS | Active, not recruiting (international) | mPFS 10.0 vs. 8.1 mo mOS 20.0 vs. 16.8 mo | [118,120] |
MAHOGANY Cohort A | NCT04082364 | II/III | 43 | HER2 + PD-1 | 1st line | Margetuximab + retifanlimab | ORR | Active, not recruiting (international) | ORR 53% DOR 10.3 mo | [122] |
HERIZON-GEA-01 Arm C | NCT05152147 | III | 918 * | HER2 + PD-1 | 1st line | Zanidatamab + tislelizumab + CAPOX or FP | PFS, OS | Active, recruiting (international) | Ongoing | [123] |
EPOC-2203 | jRCT2031230477 | Ib/II | 31 | HER2 + PD-1 | 1st line | T-DXd + nivolumab + CAPOX | DLT (Ib), ORR (II) | Active, recruiting (Japan) | Ongoing | [124] |
/ | NCT04280341 | I | 56 | HER2 + PD-1 | ≥2nd line | Disitamab vedotin + toripalimab | DLT, MTD, TRAE | Active, recruiting (China) | 1 cORR 43% mPFS 6.2 mo mOS 16.8 mo | [125] |
DESTINY-Gastric03 Arm 1C and E | NCT04379596 | Ib/II | 413 * | HER2 + PD- L-1 | 1st line | T-DXd + durvalumab ± 5-FU | Safety, INV cORR | Active, recruiting (international) | Ongoing | [127,131] |
Arm 2D | II | 43 | HER2 + PD-1 | 1st line | T-DXd + pembrolizumab + FP | Safety, INV cORR | Active, not recruiting (international) | cORR 58% | ||
Arm 2E | II | 41 | HER2 + PD-1 | 1st line | T-DXd + pembrolizumab | Safety, INV cORR | Active, not recruiting (international) | cORR 66% | ||
Arm 3 | II | n.a | HER2 + PD-1 +CTLA4 | 1st line | T-DXd + Volrustomig + FP | Safety, INV cORR | Active, recruiting (international) | Ongoing | ||
Arm 4 | II | n.a | HER2 + PD-1 +TIGIT | 1st line | T-DXd + Rilvegostomig + FP | Safety, INV cORR | Active, recruiting (international) | Ongoing | ||
INTEGA | NCT03409848 | II | 97 | HER2 + PD-1 + CTLA4 | 1st line | Trastuzumab + nivolumab + ipilimumab vs. FOLFOX | OS rate at 12 mo | Completed (Germany) | 2 12 mo OS: 57% vs. 70% mPFS 3.2 vs. 10.7 mo ORR 34% vs. 53.5% | [128,129] |
KN026-203 | NCT04521179 | II | 31 | HER2 + PD1 +CTLA4 | 1st line | KN026 + KN046 | ORR, DOR | Completed | 3 ORR77.8% DCR 92.6% | [130] |
Name | National Clinical Trial Number | Phase | N | Target | Line | Treatment | Primary Endpoint | Recruitment Status | Outcome | References |
---|---|---|---|---|---|---|---|---|---|---|
ILUSTRO Arm 3 Arm 4 | NCT03505320 | II | 3 ≅50 | CLDN18.2 + PD-1 | 3rd line or later 1st Line | Zolbetuximab + pembrolizumab Zolbetuximab +nivolumab + FOLFOX | ORR | Active, not recruiting (international) Active, recruiting (international) | ORR 0% DCR 66.7% mPFS 2.96 mo ongoing | [133,134] |
TranStar102 Cohort G Cohort H | NCT04495296 | I/IIa | 82 n.a | CLDN18.2 + PD-1 CLDN18.2 + PD-1 | 1st line 1st line | Osemitamab + nivolumab + CAPOX Osemitamab + nivolumab | TRAE, DLT, MTD, RP2D | Active, recruiting (China) | 3 mPFS 12.3 mo ORR 58.1% ongoing | [135] |
/ | NCT05632939 | Ib/II | 26 | CLDN18.2 + PD-1 | 1st line | ASKB589 + sintilimab + CAPOX | TRAE, DLT, MTD, RP2D | Active, recruiting (China) | 4 ORR 80% 100% DCR, PR 80% | [136] |
GEMINI-Gastric Substudy 3 | NCT05702229 | II | ≅40 | CLDN18.2 + PD-1+CTLA4 | 1st line | AZD0901 + volrustomig + FP | ORR, PFS | Active, recruiting (International) | Ongoing | [141] |
Substudy 4 | ≅40 | CLDN18.2 + PD-1+TIGIT | AZD0901 + rilvegostomig + FP | Ongoing | ||||||
/ | NCT05964543 | Ib/II | 72 * | CLDN18.2 + PD-L1 | 1st line | Q-1802 | TRAE, ORR | Active, recruiting (China) | Ongoing | [142] |
Name | National Clinical Trial Number | Phase | N | Target | Line | Treatment | Primary Endpoint | Recruitment Status | Outcome | Reference |
---|---|---|---|---|---|---|---|---|---|---|
FORTITUDE-102 | NCT05111626 | Ib/III | 528 | FGFR2b + PD1 | 1st line | Bemarituzumab + nivolumab + CAPOX or mFOLFOX6 vs. placebo + nivolumab + CAPOX or mFOLFOX6 | Part 1: DLT, TRAE Part 2: OS | Active, recruiting (international) | Ongoing | [201] |
EDGE | NCT05329766 | II | 41 | TIGIT + PD-1 | 1st line | Domvanalimab + zimberelimab + FOLFOX | Safety, ORR | Active, recruiting (international) | ORR 59% 6-month PFS rate 75% | [205] |
AdvanTIG-105 | NCT04047862 | Ib | 60 | TIGIT + PD-1 | 1st line | Ociperlimab + tislelizumab + CAPOX/FP | ORR | Active, not recruiting (international) | ORR 50.8% mPFS 8.2-month DCR 84.7% | [206] |
STAR-221 | NCT05568095 | III | 1040 * | TIGIT + PD-1 | 1st line | Domvanalimab + zimberelimab + FOLFOX/CAPOX vs. placebo + nivolumab + FOLFOX/CAPOX | OS | Active, not recruiting (international) | Ongoing | [207] |
DisTinGuish | NCT04363801 | II | 232 * | DKK-01 and PD-1 | 1st line | DKN-01 + tislelizumab + CAPOX or mFOLFOX6 | PFS | Active, not recruiting (international) | Ongoing | [211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korpan, M.; Puhr, H.C.; Berger, J.M.; Friedrich, A.; Prager, G.W.; Preusser, M.; Ilhan-Mutlu, A. Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns. Cancers 2025, 17, 340. https://doi.org/10.3390/cancers17030340
Korpan M, Puhr HC, Berger JM, Friedrich A, Prager GW, Preusser M, Ilhan-Mutlu A. Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns. Cancers. 2025; 17(3):340. https://doi.org/10.3390/cancers17030340
Chicago/Turabian StyleKorpan, Martin, Hannah Christina Puhr, Julia M. Berger, Alexander Friedrich, Gerald W. Prager, Matthias Preusser, and Aysegül Ilhan-Mutlu. 2025. "Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns" Cancers 17, no. 3: 340. https://doi.org/10.3390/cancers17030340
APA StyleKorpan, M., Puhr, H. C., Berger, J. M., Friedrich, A., Prager, G. W., Preusser, M., & Ilhan-Mutlu, A. (2025). Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns. Cancers, 17(3), 340. https://doi.org/10.3390/cancers17030340