Evaluating the Real-World Predictive Utility of Karnofsky and ECOG Performance Status for 90-Day Survival After Oncologic Surgery for Metastatic Spinal Tumors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Examined Variables
2.3. Study Endpoint
2.4. Statistical Analyses
3. Results
3.1. Discrimination
3.2. Diagnostic Accuracy
3.3. Calibration
3.4. Clinical Utility
4. Discussion
4.1. Interpretation and Generalizability
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laufer, I.; Iorgulescu, J.B.; Chapman, T.; Lis, E.; Shi, W.; Zhang, Z.; Cox, B.W.; Yamada, Y.; Bilsky, M.H. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: Outcome analysis in 186 patients. J. Neurosurg. Spine 2013, 18, 207–214. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef]
- Barzilai, O.; Sahgal, A.; Rhines, L.D.; Versteeg, A.L.; Sciubba, D.M.; Lazary, A.; Weber, M.H.; Schuster, J.M.; Boriani, S.; Bettegowda, C.; et al. Patient-Reported and Clinical Outcomes of Surgically Treated Patients With Symptomatic Spinal Metastases: Results From Epidemiology, Process, and Outcomes of Spine Oncology (EPOSO), a Prospective, Multi-Institutional and International Study. Neurosurgery 2024, 95, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Nater, A.; Tetreault, L.; Kopjar, B.; Arnold, P.; Dekutoski, M.; Finkelstein, J.; Fisher, C.; France, J.; Gokaslan, Z.; et al. Survival and Clinical Outcomes in Surgically Treated Patients With Metastatic Epidural Spinal Cord Compression: Results of the Prospective Multicenter AOSpine Study. J. Clin. Oncol. 2016, 34, 268–276. [Google Scholar] [CrossRef] [PubMed]
- A MacLean, M.; Touchette, C.J.; Georgiopoulos, M.; Brunette-Clément, T.; Abduljabbar, F.H.; Ames, C.P.; Bettegowda, C.; Charest-Morin, R.; Dea, N.; Fehlings, M.G.; et al. Systemic considerations for the surgical treatment of spinal metastatic disease: A scoping literature review. Lancet Oncol. 2022, 23, e321–e333. [Google Scholar] [CrossRef]
- Bollen, L.; Jacobs, W.C.H.; Van der Linden, Y.M.; Van der Hel, O.; Taal, W.; Dijkstra, P.D.S. A systematic review of prognostic factors predicting survival in patients with spinal bone metastases. Eur. Spine J. 2017, 27, 799–805. [Google Scholar] [CrossRef]
- Luksanapruksa, P.; Buchowski, J.M.; Hotchkiss, W.; Tongsai, S.; Wilartratsami, S.; Chotivichit, A. Prognostic factors in patients with spinal metastasis: A systematic review and meta-analysis. Spine J. 2017, 17, 689–708. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, J.-S.; Park, S.-J.; Kang, D.-H.; Lee, C.-S. Survival and Prognostic Factors After Surgery in Single Spinal Metastasis: Comparison of Isolated-Single Spinal Metastasis and Single Spinal Metastasis With Other Metastasis. Glob. Spine J. 2024, 15, 2246–2254. [Google Scholar] [CrossRef]
- Central Nervous System Cancers—Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1425 (accessed on 29 October 2025).
- Jaoude, J.A.; Kouzy, R.; Mainwaring, W.; Lin, T.A.; Miller, A.B.; Jethanandani, A.; Espinoza, A.F.; Pasalic, D.; Verma, V.; VanderWalde, N.A.; et al. Performance Status Restriction in Phase III Cancer Clinical Trials. J. Natl. Compr. Cancer Netw. 2020, 18, 1322–1326. [Google Scholar] [CrossRef]
- Pereira, N.R.P.; Janssen, S.J.; van Dijk, E.; Harris, M.B.; Hornicek, F.J.; Ferrone, M.L.; Schwab, J.H. Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease. J. Bone Jt. Surg. 2016, 98, 1767–1776. [Google Scholar] [CrossRef]
- Gao, Z.-Y.; Zhang, T.; Zhang, H.; Pang, C.-G.; Jiang, W.-X. Prognostic factors for overall survival in patients with spinal metastasis secondary to prostate cancer: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2020, 21, 388. [Google Scholar] [CrossRef]
- Tokuhashi, Y.; Matsuzaki, H.; Oda, H.; Oshima, M.; Ryu, J. A Revised Scoring System for Preoperative Evaluation of Metastatic Spine Tumor Prognosis. Spine 2005, 30, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, M.; Lenz, M.; Telentschak, S.; von Spreckelsen, N.; Sircar, K.; Oikonomidis, S.; Kernich, N.; Walter, S.G.; Knöll, P.; Perrech, M.; et al. Preoperative Performance Status Threshold for Favorable Surgical Outcome in Metastatic Spine Disease. Neurosurgery 2024, 95, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Tokuhashi, Y.; Uei, H.; Oshima, M. Classification and scoring systems for metastatic spine tumors: A literature review. Spine Surg. Relat. Res. 2017, 1, 44–55. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Guo, B.; Zhang, P.; Wang, J.; Wang, X.; Yao, W. Evaluation of different scoring systems for spinal metastases based on a Chinese cohort. Cancer Med. 2022, 12, 4125–4136. [Google Scholar] [CrossRef] [PubMed]
- Tokuhashi, Y.; Uei, H.; Oshima, M.; Ajiro, Y. Scoring system for prediction of metastatic spine tumor prognosis. World J. Orthop. 2014, 5, 262–271. [Google Scholar] [CrossRef]
- Carrwik, C.; Tsagkozis, P.; Wedin, R.; Robinson, Y. Predicting survival of patients with spinal metastatic disease using PathFx 3.0—A validation study of 668 patients in Sweden. Brain Spine 2022, 2, 101669. [Google Scholar] [CrossRef]
- Bindels, B.; Kuijten, R.; Groot, O.; Huele, E.; Gal, R.; de Groot, M.; van der Velden, J.; Delawi, D.; Schwab, J.; Verkooijen, H.; et al. External validation of 12 existing survival prediction models for patients with spinal metastases. Spine J. 2025, 25, 1347–1359. [Google Scholar] [CrossRef]
- Tomita, K.; Kawahara, N.; Kobayashi, T.; Yoshida, A.; Murakami, H.; Akamaru, T. Surgical Strategy for Spinal Metastases. Spine 2001, 26, 298–306. [Google Scholar] [CrossRef]
- Leithner, A.; Radl, R.; Gruber, G.; Hochegger, M.; Leithner, K.; Welkerling, H.; Rehak, P.; Windhager, R. Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur. Spine J. 2008, 17, 1488–1495. [Google Scholar] [CrossRef]
- Jang, R.W.; Caraiscos, V.B.; Swami, N.; Banerjee, S.; Mak, E.; Kaya, E.; Rodin, G.; Bryson, J.; Ridley, J.Z.; Le, L.W.; et al. Simple Prognostic Model for Patients With Advanced Cancer Based on Performance Status. J. Oncol. Pract. 2014, 10, e335–e341. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; Bono, C.M.; Ferrone, M.L.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Predicting 90-Day and 1-Year Mortality in Spinal Metastatic Disease: Development and Internal Validation. Neurosurgery 2019, 85, E671–E681. [Google Scholar] [CrossRef]
- Kelly, C.M.; Shahrokni, A. Moving beyond Karnofsky and ECOG Performance Status Assessments with New Technologies. J. Oncol. 2016, 2016, 6186543. [Google Scholar] [CrossRef] [PubMed]
- Hiratsuka, Y.; Suh, S.-Y.; Yoon, S.J.; Cheng, S.-Y.; Choi, S.-E.; Kim, S.H.; Hui, D.; Chen, P.-J.; Huang, H.-L.; Peng, J.-K.; et al. Validation of Modified Objective Prognostic Score in Patients with Advanced Cancer in Taiwan. Palliat. Med. Rep. 2024, 5, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Bakar, D.; Tanenbaum, J.E.; Phan, K.; Alentado, V.J.; Steinmetz, M.P.; Benzel, E.C.; Mroz, T.E. Decompression surgery for spinal metastases: A systematic review. Neurosurg. Focus 2016, 41, E2. [Google Scholar] [CrossRef]
- Zakaria, H.M.; Wilkinson, B.M.; Pennington, Z.; Saadeh, Y.S.; Lau, D.; Chandra, A.; Ahmed, A.K.; Macki, M.; Anand, S.K.; A Abouelleil, M.; et al. Sarcopenia as a Prognostic Factor for 90-Day and Overall Mortality in Patients Undergoing Spine Surgery for Metastatic Tumors: A Multicenter Retrospective Cohort Study. Neurosurgery 2020, 87, 1025–1036. [Google Scholar] [CrossRef]
- Miranda, S.P.; Sullivan, P.Z.; Albayar, A.; Ramayya, A.G.; Blue, R.; Ali, Z.S.; Malhotra, N.; Marcotte, P.; Yoon, J.; Saifi, C.; et al. Preoperative Predictors of Survival in Patients With Spinal Metastatic Disease. Int. J. Spine Surg. 2023, 17, 557–563. [Google Scholar] [CrossRef]
- Santipas, B.; Veerakanjana, K.; Ittichaiwong, P.; Chavalparit, P.; Wilartratsami, S.; Luksanapruksa, P. Development and internal validation of machine-learning models for predicting survival in patients who underwent surgery for spinal metastases. Asian Spine J. 2024, 18, 325–335. [Google Scholar] [CrossRef]
- Amelot, A.M.-P.; Terrier, L.-M.M.-P.; Le Nail, L.-R.; Buffenoir, K.M.-P.; Cook, A.-R.; François, P.M.-P.; Marie-Hardy, L.; Mathon, B. Spine Metastasis: Patients With Poor Performance Status (ECOG) Could benefit From Palliative Surgical Care! A Prospective Cohort Study. Spine 2022, 48, 476–483. [Google Scholar] [CrossRef]
- Knapp, B.; Govindan, A.; Patel, S.S.; Pepin, K.; Wu, N.; Devarakonda, S.; Buchowski, J.M. Outcomes in Patients with Spinal Metastases Managed with Surgical Intervention. Cancers 2024, 16, 438. [Google Scholar] [CrossRef]





| Parameter | Value, % |
|---|---|
| Age (mean, SD) | 62, 13 |
| Male sex (%) | 103 (59) |
| BMI (mean kg/m2, SD) | 25.7, 5.8 |
| ASA class (median, IQR) | 3 (3–3) |
| Albumin (mean, SD) | 3.7 (0.6) |
| PNI (mean, SD) | 42.4 (7.5) |
| Neurological status | |
| Frankel D–E (%) | 139 (80) |
| Frankel A–C (%) | 34 (20) |
| Non-ambulatory at presentation (%) | 48 (28) |
| De novo metastasis (%) | 64 (37) |
| Primary cancer | |
| Breast cancer (%) | 26 (15) |
| Lung cancer (%) | 27 (15) |
| Prostate cancer (%) | 35 (20) |
| Colorectal cancer (%) | 6 (3) |
| Kidney cancer (%) | 6 (3) |
| Thyroid cancer (%) | 4 (2) |
| Hematological cancer (%) | 34 (19) |
| Other cancer (%) | 37 (21) |
| Metastatic spinal cord compression | 155 (89) |
| Pathologic vertebral compression fracture (%) | 90 (52) |
| Performance Score Thresholds | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value |
|---|---|---|---|---|
| KPS | ||||
| ≥20 | 1 | 0 | 0.73 | 0 |
| ≥30 | 0.99 | 0.02 | 0.73 | 0.5 |
| ≥40 | 0.98 | 0.1 | 0.74 | 0.62 |
| ≥50 | 0.9 | 0.31 | 0.78 | 0.54 |
| ≥60 | 0.76 | 0.48 | 0.8 | 0.43 |
| ≥70 | 0.66 | 0.62 | 0.82 | 0.41 |
| ≥80 | 0.49 | 0.69 | 0.81 | 0.34 |
| ≥90 | 0.28 | 0.83 | 0.82 | 0.31 |
| ≥100 | 0.05 | 0.96 | 0.75 | 0.28 |
| ECOG-PS | ||||
| ≤0 | 0.07 | 0.96 | 0.82 | 0.28 |
| ≤1 | 0.51 | 0.77 | 0.86 | 0.37 |
| ≤2 | 0.76 | 0.5 | 0.8 | 0.44 |
| ≤3 | 0.98 | 0.12 | 0.75 | 0.75 |
| ≤4 | 1 | 0 | 0.73 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Garza Ramos, R.; Bangash, A.H.; Kirnaz, S.; Fluss, R.; Cao, V.; Alexandrov, A.; Belman, L.; Murthy, S.G.; Gelfand, Y.; Yassari, R. Evaluating the Real-World Predictive Utility of Karnofsky and ECOG Performance Status for 90-Day Survival After Oncologic Surgery for Metastatic Spinal Tumors. Cancers 2025, 17, 3629. https://doi.org/10.3390/cancers17223629
De La Garza Ramos R, Bangash AH, Kirnaz S, Fluss R, Cao V, Alexandrov A, Belman L, Murthy SG, Gelfand Y, Yassari R. Evaluating the Real-World Predictive Utility of Karnofsky and ECOG Performance Status for 90-Day Survival After Oncologic Surgery for Metastatic Spinal Tumors. Cancers. 2025; 17(22):3629. https://doi.org/10.3390/cancers17223629
Chicago/Turabian StyleDe La Garza Ramos, Rafael, Ali Haider Bangash, Sertac Kirnaz, Rose Fluss, Victoria Cao, Alexander Alexandrov, Liza Belman, Saikiran G. Murthy, Yaroslav Gelfand, and Reza Yassari. 2025. "Evaluating the Real-World Predictive Utility of Karnofsky and ECOG Performance Status for 90-Day Survival After Oncologic Surgery for Metastatic Spinal Tumors" Cancers 17, no. 22: 3629. https://doi.org/10.3390/cancers17223629
APA StyleDe La Garza Ramos, R., Bangash, A. H., Kirnaz, S., Fluss, R., Cao, V., Alexandrov, A., Belman, L., Murthy, S. G., Gelfand, Y., & Yassari, R. (2025). Evaluating the Real-World Predictive Utility of Karnofsky and ECOG Performance Status for 90-Day Survival After Oncologic Surgery for Metastatic Spinal Tumors. Cancers, 17(22), 3629. https://doi.org/10.3390/cancers17223629

