Genetic Heterogeneity of Undifferentiated Pleomorphic Sarcoma: Is There Potential for Targeted Therapy?
Simple Summary
Abstract
1. Introduction
2. Molecular Genetic Heterogeneity of UPS
3. Epigenetic Alterations in UPS
4. Changes in UPS Signaling and Associated Therapeutic Approaches

5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABCB1 | ATP Binding Cassette Subfamily B Member 1 |
| ABCG2 | ATP Binding Cassette Subfamily G Member 2 (JR Blood Group) |
| AKT | AKT Serine/Threonine Kinase |
| ALK | Anaplastic Lymphoma Kinase |
| AMOT | Angiomotin |
| AMPD2 | Adenosine Monophosphate Deaminase 2 |
| ANXA2P2 | Annexin A2 Pseudogene 2 |
| ASPS | Alveolar Soft Part Sarcoma |
| ATM | Ataxia Telangiectasia Mutated |
| ATR | ATR Serine/Threonine Kinase |
| ATRX | ATRX Chromatin Remodeler |
| AXL | AXL Receptor Tyrosine Kinase |
| BCOR | BCL6 Corepressor |
| BET/EP300 | BET and CBP/EP300 bromodomain |
| BGN | Biglycan |
| BRAF | B-Raf Proto-Oncogene, Serine/Threonine Kinase |
| CCNB | Cyclin B |
| CD | Cluster Of Differentiation |
| CDH | Cadherin |
| CDK4 | Cyclin Dependent Kinase 4 |
| CDKN2A | Cyclin Dependent Kinase Inhibitor 2A |
| CIC | Capicua Transcriptional Repressor |
| CITED2 | Cbp/P300 Interacting Transactivator with Glu/Asp Rich Carboxy-Terminal Domain 2 |
| CKLF | Chemokine Like Factor |
| CLTC | Clathrin Heavy Chain |
| CMTM6 | CKLF Like MARVEL Transmembrane Domain Containing 6 |
| COL3A1 | Collagen Type III Alpha 1 Chain |
| CSF2RB | Colony Stimulating Factor 2 Receptor Subunit Beta |
| CTLA4 | Cytotoxic T-Lymphocyte Antigen-4 |
| DC | Dendritic Cells |
| DCTN1 | Dynactin-1 |
| DDLPS | Dedifferentiated Liposarcoma |
| DNMT3B | DNA Methyltransferase 3 Beta |
| DUX4L8 | Double Homeobox 4 Like 8 |
| E2F6 | E2F Transcription Factor 6 |
| 4EBP | Eukaryotic Translation Initiation Factor 4E Binding Protein 1 |
| EGFR | Epidermal Growth Factor Receptor |
| EIF2AK4 | Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4 |
| EML4 | Echinoderm Microtubule-Associated Protein-Like 4 |
| ETV6 | ETS Variant Transcription Factor 6 |
| EWSR1 | Ewing Sarcoma RNA Binding Protein 1 |
| FARP1 | FERM, ARH/Rhogef and Pleckstrin Domain Protein 1 |
| FDR | False Discovery Rate |
| FGF | Fibroblast Growth Factor |
| FGFR | Fibroblast Growth Factor Receptor |
| FKBP4 | FK506-Binding Protein 4 |
| FOSL1 | FOS Like 1, AP-1 Transcription Factor Subunit |
| GLI1 | GLI Family Zinc Finger 1 |
| GNAS | Guanine Nucleotide Binding Protein (G Protein), Alpha Stimulating Activity Polypeptide |
| GULP1 | GULP PTB Domain Containing Engulfment Adaptor 1 |
| HES1 | Hes Family BHLH Transcription Factor 1 |
| HEY | Hes Related Family BHLH Transcription Factor with YRPW Motif |
| HGF | Hepatocyte Growth Factor |
| HHIP | Hedgehog Interacting Protein |
| HSP90 | Heat Shock Protein 90 |
| Iba1 | Ionized Calcium-Binding Adapter Molecule 1 |
| IGF1R | Insulin Like Growth Factor 1 Receptor |
| IL-7 | Interleukin-7 |
| IMP3 | IMP U3 Small Nucleolar Ribonucleoprotein 3 |
| JAG1 | Jagged Canonical Notch Ligand 1 |
| JAK | Janus Kinase |
| KIT | KIT Proto-Oncogene, Receptor Tyrosine Kinase |
| KRAS | KRAS Proto-Oncogene, Gtpase |
| LINC | Linkers Of Nucleoskeleton and Cytoskeleton |
| LMNA | Lamin A/C |
| lncRNA | Long Non-Coding RNA |
| LPS | Liposarcoma |
| LRRC15 | Leucine Rich Repeat Containing 15 |
| MACROD2 | Mono-ADP Ribosylhydrolase 2 |
| MAGE-A3 | Melanoma-Associated Antigen 3, Family Member A3 |
| MAPK | Mitogen-Activated Protein Kinase |
| MDM2 | Mouse Double Minute 2 |
| MED12 | Mediator Complex Subunit |
| MEK (MAP2K1) | Mitogen-Activated Protein Kinase Kinase 1 |
| MFH | Malignant Fibrous Histiocytoma |
| MFS | Myxofibrosarcoma |
| MKI67 | Marker of Proliferation Ki-67 |
| MMP | Matrix Metallopeptidase |
| MPNST | Malignant Peripheral Nerve Sheath Tumor |
| MRI | Magnetic Resonance Imaging |
| MSR1 | Macrophage Scavenger Receptor 1 |
| mTOR | Mechanistic Target of Rapamycin Kinase |
| MVP | Major Vault Protein |
| MYST1 | MYST Histone Acetyltransferase 1 |
| NAE | NEDD8 Activating Enzyme |
| NCOR1 | Nuclear Receptor Corepressor 1 |
| NEAT1 | Nuclear Enriched Abundant Transcript 1 |
| NF-kB | Nuclear Factor Kappa B |
| NOTCH | Notch Receptor |
| NPM1 | Nucleophosmin 1 |
| NTRK | Neurotrophic Tropomyosin Receptor Kinase |
| NTSR1 | Neurotensin Receptor 1 |
| NY-ESO- 1 | New York esophageal squamous cell carcinoma 1 |
| PCLO | Piccolo Presynaptic Cytomatrix Protein |
| PCR | Polymerase Chain Reaction |
| PD1 | Programmed Cell Death Protein 1 |
| PDCD11 | Programmed Cell Death 11 |
| PDGFR | Platelet Derived Growth Factor Receptor |
| PD-L1 | Programmed Cell Death Protein Ligand 1 |
| PI3K | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase |
| PIK3CA | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
| PLK1 | Polo Like Kinase 1 |
| PLOD2 | Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 |
| PRDM | PR/SET Domain |
| PTCH1 | Patched 1 |
| PTEN | Phosphatase and Tensin Homolog |
| RB1 | Retinoblastoma |
| RNASEH2B | Ribonuclease H2, Subunit B |
| ROR2 | Receptor Tyrosine Kinase Like Orphan Receptor 2 |
| S6RP | Ribosomal Protein S6 |
| SARM | Sterile Alpha and TIR Motif Containing |
| SF3B1 | Splicing Factor 3b Subunit 1 |
| SIRPα | Signal Regulatory Protein Alpha |
| SKP2 | S-Phase Kinase Associated Protein 2 |
| SMC1A | Structural Maintenance of Chromosomes 1A |
| SOCS3 | Suppressor of Cytokine Signaling 3 |
| SS | Synovial Sarcoma |
| STAT | Signal Transducer and Activator of Transcription |
| STK24 | Serine/Threonine Kinase 24 |
| STS | Soft Tissue Sarcoma |
| TCGA | The Cancer Genome Atlas |
| TEM-1 | Tumor endothelin 1 |
| TGFβ | Transforming Growth Factor Beta |
| TIGIT | T Cell Immunoreceptor with Ig and ITIM Domains |
| TKI | Tyrosine Kinase Inhibitor |
| TMA | Tissue Microarray |
| TMB | Tumor Mutational Burden |
| TMTC | Transmembrane And Tetratricopeptide Repeat Containing |
| TP53 | Tumor Protein P53 |
| TRIO | Trio Rho Guanine Nucleotide Exchange Factor |
| VEGF | Vascular Endothelial Growth Factor |
| VGLL3 | Vestigial Like Family Member 3 |
| VMP1 | Vacuole Membrane Protein 1 |
| WNT7B | Wingless-Type MMTV Integration Site Family, Member 7B |
| WWTR1 (TAZ) | WW Domain Containing Transcription Regulator 1 |
| UPA | Plasminogen Activator, Urokinase |
| UPS | Undifferentiated Pleomorphic Sarcoma |
| UPR | Unfolded Protein Response |
| YAP1 | Yes1 Associated Transcriptional Regulator |
References
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and Perspectives. Pathologica 2020, 113, 70–84. [Google Scholar] [CrossRef]
- Goldblum, J.R. An Approach to Pleomorphic Sarcomas: Can We Subclassify, and Does It Matter? Mod. Pathol. 2014, 27, S39–S46. [Google Scholar] [CrossRef]
- Carter, C.S.; Patel, R.M. Cutaneous Soft Tissue Tumors: Diagnostically Disorienting Epithelioid Tumors That Are Not Epithelial, and Other Perplexing Mesenchymal Lesions. Mod. Pathol. 2020, 33, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Vaitiekiene, A.; Vaitiekus, D.; Urbonaite, L.; Jankauskas, A.; Portacenko, J.; Lapinskas, T.; Benetis, R.; Siudikas, A.; Veikutiene, A.; Poskiene, L.; et al. Multidisciplinary Approach to Rare Primary Cardiac Sarcoma: A Case Report and Review. BMC Cancer 2019, 19, 529. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.X.; Eichenfield, D.Z.; Orme, C.; Hinds, B. Pleomorphic Dermal Sarcoma in a Man with HIV: Report with next-Generation Sequencing Analysis and Review of the Atypical Fibroxanthoma/Pleomorphic Dermal Sarcoma Spectrum. Dermatol. Online J. 2019, 25, 13030. [Google Scholar] [CrossRef]
- Jibbe, A.; Worley, B.; Miller, C.H.; Alam, M. Surgical Excision Margins for Fibrohistiocytic Tumors, Including Atypical Fibroxanthoma and Undifferentiated Pleomorphic Sarcoma: A Probability Model Based on a Systematic Review. J. Am. Acad. Dermatol. 2022, 87, 833–840. [Google Scholar] [CrossRef]
- Thway, K.; Fisher, C. Undifferentiated and dedifferentiated soft tissue neoplasms: Immunohistochemical surrogates for differential diagnosis. Semin. Diagn. Pathol. 2021, 38, 170–186. [Google Scholar] [CrossRef]
- Sun, H.; Liu, J.; Hu, F.; Xu, M.; Leng, A.; Jiang, F.; Chen, K. Current Research and Management of Undifferentiated Pleomorphic Sarcoma/Myofibrosarcoma. Front. Genet. 2023, 14, 1109491. [Google Scholar] [CrossRef]
- Mairal, A.; Chibon, F.; Rousselet, A.; Couturier, J.; Terrier, P.; Aurias, A. Establishment of a Human Malignant Fibrous Histiocytoma Cell Line, COMA. Cancer Genet. Cytogenet. 2000, 121, 117–123. [Google Scholar] [CrossRef]
- Stefano, S.; Giovanni, S. The PTEN Tumor Suppressor Gene in Soft Tissue Sarcoma. Cancers 2019, 11, 1169. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, L.; Wang, Y.; You, X.; Ju, Y.; Sun, T.; Fan, Z. A Novel TMTC2-NTRK3 Fusion in Undifferentiated High-Grade Pleomorphic Sarcoma. J. Cancer Res. Clin. Oncol. 2022, 148, 2933–2937. [Google Scholar] [CrossRef] [PubMed]
- Goh, X.N.; Seng, M.S.-F.; Loh, A.H.P.; Gupta, A.; Chang, K.T.E.; Iyer, P. Larotrectinib Followed by Selitrectinib in a Novel DCTN1–NTRK1 Fusion Undifferentiated Pleomorphic Sarcoma. J. Oncol. Pharm. Pract. 2021, 27, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Schäfer, R.; Li, T.; Fang, M.; Liu, L. A Primary Undifferentiated Pleomorphic Sarcoma of the Lumbosacral Region Harboring a LMNA-NTRK1 Gene Fusion with Durable Clinical Response to Crizotinib: A Case Report. BMC Cancer 2018, 18, 842. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.M.; Niada, S.; Brini, A.T.; Morris, M.R.; Kurusamy, S.; Alholle, A.; Huen, D.; Antonescu, C.R.; Tirode, F.; Sumathi, V.; et al. Genomic and Transcriptomic Characterization of Undifferentiated Pleomorphic Sarcoma of Bone. J. Pathol. 2019, 247, 166–176. [Google Scholar] [CrossRef]
- Bou-Maroun, L.M.; Hoff, L.; Joshi, A.; Bloom, D.A.; Heider, A.; Geiger, J.D.; Wu, Y.; Robinson, D.; Mody, R.; Rao, R.J. Undifferentiated Pleomorphic Sarcoma of the Pancreas with Novel SARM1-NTRK 1 Gene Fusion and Associated Pancreatitis, Panniculitis, and Polyarthritis Syndrome. Pediatr. Blood Cancer 2024, 71, e30819. [Google Scholar] [CrossRef]
- Goffinet, S.; Di Mauro, I.; Doyen, J.; Boyer, J.; Birtwisle-Peyrottes, I.; Keslair, F.; Pedeutour, F.; Dadone-Montaudie, B. Vanished MDM2 Amplification in Multiple Recurrences of an Irradiated Poorly Differentiated Sarcoma with Amplified TRIO::TERT Fusion Gene. Genes. Chromosomes Cancer 2023, 62, 342–352. [Google Scholar] [CrossRef]
- Delespaul, L.; Lesluyes, T.; Pérot, G.; Brulard, C.; Lartigue, L.; Baud, J.; Lagarde, P.; Le Guellec, S.; Neuville, A.; Terrier, P.; et al. Recurrent TRIO Fusion in Nontranslocation–Related Sarcomas. Clin. Cancer Res. 2017, 23, 857–867. [Google Scholar] [CrossRef]
- Suster, D.I.; Deshpande, V.; Chebib, I.; Taylor, M.S.; Mullen, J.; Bredella, M.A.; Nielsen, G.P. Spindle Cell Liposarcoma with a TRIO-TERT Fusion Transcript. Virchows Arch. 2019, 475, 391–394. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, X.; Chen, J. EML4-ALK Rearrangement in Primary Malignant Fibrous Histiocytoma of the Lung Treated with Alectinib: A Case Report. Front. Oncol. 2022, 12, 978327. [Google Scholar] [CrossRef]
- Schneider, J.L.; Lin, J.J.; Shaw, A.T. ALK-positive lung cancer: A moving target. Nat. Cancer 2023, 4, 330–343. [Google Scholar] [CrossRef]
- Elshatlawy, M.; Sampson, J.; Clarke, K.; Bayliss, R. EML4-ALK biology and drug resistance in non-small cell lung cancer: A new phase of discoveries. Mol. Oncol. 2023, 17, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zhang, S.; Cai, W.; Wang, J.; Wang, T.; Tang, N.; Shi, Y.; Luo, X.; Yan, W. Identification of Novel Fusion Transcripts in Undifferentiated Pleomorphic Sarcomas by Transcriptome Sequencing. Cancer Genom.-Proteom. 2019, 16, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Hofvander, J.; Tayebwa, J.; Nilsson, J.; Magnusson, L.; Brosjö, O.; Larsson, O.; Vult von Steyern, F.; Mandahl, N.; Fletcher, C.D.M.; Mertens, F. Recurrent PRDM10 Gene Fusions in Undifferentiated Pleomorphic Sarcoma. Clin. Cancer Res. 2015, 21, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Hofvander, J.; Puls, F.; Pillay, N.; Steele, C.D.; Flanagan, A.M.; Magnusson, L.; Nilsson, J.; Mertens, F. Undifferentiated Pleomorphic Sarcomas with PRDM10 Fusions Have a Distinct Gene Expression Profile. J. Pathol. 2019, 249, 425–434. [Google Scholar] [CrossRef]
- Mistik, O.; Sayar, H. Immunohistochemical Positive Regulatory Domain Member 10 Expression in Soft Tissue Sarcomas. Pol. J. Pathol. 2022, 73, 223–232. [Google Scholar] [CrossRef]
- Lei, T.; Shen, Z.; Shen, M.; Du, L.; Shi, Y.; Peng, Y.; Zhou, Z.; Da, W.; Chen, X.; Li, Q. Clinicopathological and Genetic Characterization of Radiotherapy-Induced Undifferentiated Pleomorphic Sarcoma Following Breast Cancer: A Case Series of Three Tumors and Comprehensive Literature Review. Diagn. Pathol. 2024, 19, 110. [Google Scholar] [CrossRef]
- Rüping, K.; Altendorf-Hofmann, A.; Chen, Y.; Kampmann, E.; Gibis, S.; Lindner, L.; Katenkamp, D.; Petersen, I.; Knösel, T. High IGF2 and FGFR3 Are Associated with Tumour Progression in Undifferentiated Pleomorphic Sarcomas, but EGFR and FGFR3 Mutations Are a Rare Event. J. Cancer Res. Clin. Oncol. 2014, 140, 1315–1322. [Google Scholar] [CrossRef]
- Urbini, M.; Astolfi, A.; Indio, V.; Nannini, M.; Pizzi, C.; Paolisso, P.; Tarantino, G.; Pantaleo, M.A.; Saponara, M. Genetic Aberrations and Molecular Biology of Cardiac Sarcoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920918492. [Google Scholar] [CrossRef]
- Hong, C.S.; Partovi, E.; Clune, J.; Huttner, A.; Park, H.S.; Omay, S.B. Genomic Characterization of Radiation-Induced Intracranial Undifferentiated Pleomorphic Sarcoma. Case Rep. Genet. 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Ray, U.; Pathoulas, C.L.; Thirusangu, P.; Purcell, J.W.; Kannan, N.; Shridhar, V. Exploiting LRRC15 as a Novel Therapeutic Target in Cancer. Cancer Res. 2022, 82, 1675–1681. [Google Scholar] [CrossRef]
- Demetri, G.D.; Luke, J.J.; Hollebecque, A.; Powderly, J.D.; Spira, A.I.; Subbiah, V.; Naumovski, L.; Chen, C.; Fang, H.; Lai, D.W.; et al. First-in-Human Phase I Study of ABBV-085, an Antibody–Drug Conjugate Targeting LRRC15, in Sarcomas and Other Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3556–3566. [Google Scholar] [CrossRef]
- Fullenkamp, C.A.; Hall, S.L.; Jaber, O.I.; Pakalniskis, B.L.; Savage, E.C.; Savage, J.M.; Ofori-Amanfo, G.K.; Lambertz, A.M.; Ivins, S.D.; Stipp, C.S.; et al. TAZ and YAP Are Frequently Activated Oncoproteins in Sarcomas. Oncotarget 2016, 7, 30094–30108. [Google Scholar] [CrossRef] [PubMed]
- Roland, C.L.; May, C.D.; Watson, K.L.; Al Sannaa, G.A.; Dineen, S.P.; Feig, R.; Landers, S.; Ingram, D.R.; Wang, W.-L.; Guadagnolo, B.A.; et al. Analysis of Clinical and Molecular Factors Impacting Oncologic Outcomes in Undifferentiated Pleomorphic Sarcoma. Ann. Surg. Oncol. 2016, 23, 2220–2228. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.A.; Vegas, I.; El-Senduny, F.F.; Zhang, J.; Mata, D.A.; Hiemenz, M.C.; Hughes, S.R.; Sa, B.C.; Kraft, G.P.; Gorbatov, N.; et al. Pan-Cancer Genomic Analysis of AXL Mutations Reveals a Novel, Recurrent, Functionally Activating AXL W451C Alteration Specific to Myxofibrosarcoma. Am. J. Surg. Pathol. 2024, 48, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, H.; Yoshida, K.I.; Nakai, S.; Suzuki, R.; Imura, Y.; Takami, H.; Watanabe, M.; Wakamatsu, T.; Tamiya, H.; Outani, H.; et al. Successful pazopanib treatment of undifferentiated pleomorphic sarcoma with coamplification of PDGFRA, VEGFR2 and KIT: A case report. Mol. Clin. Oncol. 2024, 21, 69. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Li, X.; Wang, Y.; Xie, Y.; Liu, C.; Li, F. Undifferentiated Pleomorphic Sarcoma with Co-Existence of KRAS/PIK3CA Mutations. Int. J. Clin. Exp. Pathol. 2015, 8, 8563–8567. [Google Scholar]
- Vanni, S.; Fausti, V.; Fonzi, E.; Liverani, C.; Miserocchi, G.; Spadazzi, C.; Cocchi, C.; Calabrese, C.; Gurrieri, L.; Riva, N.; et al. Unveiling the Genomic Basis of Chemosensitivity in Sarcomas of the Extremities: An Integrated Approach for an Unmet Clinical Need. Int. J. Mol. Sci. 2023, 24, 6926. [Google Scholar] [CrossRef]
- Higuchi, M.; Yamada, H.; Machino, K.; Oshibe, I.; Soeta, N.; Saito, T.; Uramoto, H.; Yamada, S.; Hojo, H.; Suzuki, H. Successful Multidisciplinary Treatment for Aggressive Primary Pulmonary Undifferentiated Pleomorphic Sarcoma. Case Rep. Oncol. 2020, 13, 385–391. [Google Scholar] [CrossRef]
- Suzuki, H.; Fukuda, M.; Shirono, T.; Kondo, R.; Tanaka, T.; Niizeki, T.; Akiba, J.; Koga, H.; Kawaguchi, T. A Rare Case of Primary Hepatic Undifferentiated Pleomorphic Sarcoma: Exploring Cancer-Related Gene Mutations. Intern. Med. 2025, 64, 1653–1658. [Google Scholar] [CrossRef]
- Abeshouse, A.; Adebamowo, C.; Adebamowo, S.N.; Akbani, R.; Akeredolu, T.; Ally, A.; Anderson, M.L.; Anur, P.; Appelbaum, E.L.; Armenia, J.; et al. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965.e28. [Google Scholar] [CrossRef]
- Ramsey, J.K.; Chen, J.L.; Schoenfield, L.; Cho, R.I. Undifferentiated Pleomorphic Sarcoma Metastatic to the Orbit. Ophthalmic Plast. Reconstr. Surg. 2018, 34, e193–e195. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.F.; Gerke, J.S.; Knösel, T.; Altendorf-Hofmann, A.; Musa, J.; Alba-Rubio, R.; Stein, S.; Hölting, T.L.B.; Cidre-Aranaz, F.; Romero-Pérez, L.; et al. Functional Genomics Identifies AMPD2 as a New Prognostic Marker for Undifferentiated Pleomorphic Sarcoma. Int. J. Cancer 2019, 144, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Cullen, M.M.; Lazarides, A.L.; Pittman, P.D.; Flamant, E.M.; Stoeber, K.L.; Stoeber, K.; Visguass, J.D.; Brigman, B.E.; Riedel, R.F.; Cardona, D.M.; et al. Cell-Cycle Phase Progression Analysis Identifies Three Unique Phenotypes in Soft Tissue Sarcoma. BMC Cancer 2024, 24, 1288. [Google Scholar] [CrossRef] [PubMed]
- Moiseeva, N.I.; Laletina, L.A.; Fetisov, T.I.; Makhmudova, L.F.; Manikaylo, A.E.; Fomina, L.Y.; Burov, D.A.; Lesovaya, E.A.; Bokhyan, B.Y.; Zinovieva, V.Y.; et al. Analysis of Multiple Drug Resistance Mechanism in Different Types of Soft Tissue Sarcomas: Assessment of the Expression of ABC-Transporters, MVP, YB-1, and Analysis of Their Correlation with Chemosensitivity of Cancer Cells. Int. J. Mol. Sci. 2022, 23, 3183. [Google Scholar] [CrossRef]
- Lewin, J.; Garg, S.; Lau, B.Y.; Dickson, B.C.; Traub, F.; Gokgoz, N.; Griffin, A.M.; Ferguson, P.C.; Andrulis, I.L.; Sim, H.; et al. Identifying Actionable Variants Using next Generation Sequencing in Patients with a Historical Diagnosis of Undifferentiated Pleomorphic Sarcoma. Int. J. Cancer 2018, 142, 57–65. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, M.Y.; Jiang, C.; Zhang, Z.; Bui, N.Q.; Bien, J.; Siy, A.; Achacoso, N.; Solorzano, A.V.; Tse, P.; et al. Sex-Dependent Prognosis of Patients with Advanced Soft Tissue Sarcoma. Clin. Cancer Res. 2024, 30, 413–419. [Google Scholar] [CrossRef]
- Kirilin, E.M.; Fetisov, T.I.; Moiseeva, N.I.; Lesovaya, E.A.; Laletina, L.A.; Makhmudova, L.F.; Manikaylo, A.E.; Fomina, L.Y.; Burov, D.A.; Bokhyan, B.Y.; et al. Soft Tissue Sarcoma Study: Association of Genetic Alterations in the Apoptosis Pathways with Chemoresistance to Doxorubicin. Cancers 2022, 14, 1796. [Google Scholar] [CrossRef]
- Fang, Y.; Barrows, D.; Dabas, Y.; Carroll, T.S.; Singer, S.; Tap, W.D.; Nacev, B.A. ATRX Guards against Aberrant Differentiation in Mesenchymal Progenitor Cells. Nucleic Acids Res. 2024, 52, 4950–4968. [Google Scholar] [CrossRef]
- Li, G.Z.; Okada, T.; Kim, Y.-M.; Agaram, N.P.; Sanchez-Vega, F.; Shen, Y.; Tsubokawa, N.; Rios, J.; Martin, A.S.; Dickson, M.A.; et al. Rb and P53-Deficient Myxofibrosarcoma and Undifferentiated Pleomorphic Sarcoma Require Skp2 for Survival. Cancer Res. 2020, 80, 2461–2471. [Google Scholar] [CrossRef]
- Francis, P.; Namløs, H.; Müller, C.; Edén, P.; Fernebro, J.; Berner, J.-M.; Bjerkehagen, B.; Åkerman, M.; Bendahl, P.-O.; Isinger, A.; et al. Diagnostic and Prognostic Gene Expression Signatures in 177 Soft Tissue Sarcomas: Hypoxia-Induced Transcription Profile Signifies Metastatic Potential. BMC Genom. 2007, 8, 73. [Google Scholar] [CrossRef]
- Klein, J.C.; Wang, L.; Strand, D.; Lastufka, C.; Hosler, G.A.; Hon, G.C. Single-Cell and Spatial Transcriptomics Identify COL6A3 as a Prognostic Biomarker in Undifferentiated Pleomorphic Sarcoma. Mol. Cancer 2024, 23, 257. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, W.; He, R.; Ma, J.; Lin, P.; Xie, Z.; Ma, F.; Chen, G. Determining the Prognostic Significance of Alternative Splicing Events in Soft Tissue Sarcoma Using Data from The Cancer Genome Atlas. J. Transl. Med. 2019, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.; Francis, P.; Bendahl, P.-O.; Fernebro, J.; Åkerman, M.; Fletcher, C.; Rydholm, A.; Borg, Å.; Nilbert, M. Indistinguishable Genomic Profiles and Shared Prognostic Markers in Undifferentiated Pleomorphic Sarcoma and Leiomyosarcoma: Different Sides of a Single Coin? Lab. Investig. 2009, 89, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Ibstedt, S.; Piccinelli, P.; Sydow, S.; Köster, J.; Mertens, F. Structural Variants in the SMC1A Gene Associated with Near-Haploidy in Undifferentiated Pleomorphic Sarcomas. Genes Chromosomes Cancer 2024, 63, e23255. [Google Scholar] [CrossRef]
- Aoki, Y.; Yamamoto, J.; Tome, Y.; Hamada, K.; Masaki, N.; Inubushi, S.; Tashiro, Y.; Bouvet, M.; Endo, I.; Nishida, K.; et al. Over-Methylation of Histone H3 Lysines Is a Common Molecular Change Among the Three Major Types of Soft-Tissue Sarcoma in Patient-Derived Xenograft (PDX) Mouse Models. Cancer Genom.-Proteom. 2021, 18, 715–721. [Google Scholar] [CrossRef]
- Fuller, A.M.; DeVine, A.; Murazzi, I.; Mason, N.J.; Weber, K.; Eisinger-Mathason, T.S.K. Comparative Oncology Reveals DNMT3B as a Molecular Vulnerability in Undifferentiated Pleomorphic Sarcoma. Cell. Oncol. 2022, 45, 1277–1295. [Google Scholar] [CrossRef]
- Guled, M.; Pazzaglia, L.; Borze, I.; Mosakhani, N.; Novello, C.; Benassi, M.S.; Knuutila, S. Differentiating Soft Tissue Leiomyosarcoma and Undifferentiated Pleomorphic Sarcoma: A MiRNA Analysis. Genes Chromosomes Cancer 2014, 53, 693–702. [Google Scholar] [CrossRef]
- Zoroddu, S.; Lucariello, A.; De Luca, A.; Bagella, L. Dysregulation of MiRNAs in Soft Tissue Sarcomas. Cells 2024, 13, 1853. [Google Scholar] [CrossRef]
- Mito, J.K.; Min, H.D.; Ma, Y.; Carter, J.E.; Brigman, B.E.; Dodd, L.; Dankort, D.; McMahon, M.; Kirsch, D.G. Oncogene-dependent Control of miRNA Biogenesis and Metastatic Progression in a Model of Undifferentiated Pleomorphic Sarcoma. J. Pathol. 2013, 229, 132–140. [Google Scholar] [CrossRef]
- Huang, J.; Sachdeva, M.; Xu, E.; Robinson, T.J.; Luo, L.; Ma, Y.; Williams, N.T.; Lopez, O.; Cervia, L.D.; Yuan, F.; et al. The Long Noncoding RNA NEAT1 Promotes Sarcoma Metastasis by Regulating RNA Splicing Pathways. Mol. Cancer Res. 2020, 18, 1534–1544. [Google Scholar] [CrossRef]
- Thoenen, E.; Curl, A.; Iwakuma, T. TP53 in Bone and Soft Tissue Sarcomas. Pharmacol. Ther. 2019, 202, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Veitch, Z.; Zer, A.; Loong, H.; Salah, S.; Masood, M.; Gupta, A.; Bradbury, P.A.; Hogg, D.; Wong, A.; Kandel, R.; et al. A Phase II Study of ENMD-2076 in Advanced Soft Tissue Sarcoma (STS). Sci. Rep. 2019, 9, 7390. [Google Scholar] [CrossRef] [PubMed]
- Serrano, C.; Romagosa, C.; Hernández-Losa, J.; Simonetti, S.; Valverde, C.; Moliné, T.; Somoza, R.; Pérez, M.; Vélez, R.; Vergés, R.; et al. RAS/MAPK Pathway Hyperactivation Determines Poor Prognosis in Undifferentiated Pleomorphic Sarcomas. Cancer 2016, 122, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.D.; Mito, J.K.; Eward, W.C.; Chitalia, R.; Sachdeva, M.; Ma, Y.; Barretina, J.; Dodd, L.; Kirsch, D.G. NF1 Deletion Generates Multiple Subtypes of Soft-Tissue Sarcoma That Respond to MEK Inhibition. Mol. Cancer Ther. 2013, 12, 1906–1917. [Google Scholar] [CrossRef]
- Maki, R.G.; D’Adamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II Study of Sorafenib in Patients with Metastatic or Recurrent Sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef]
- Eroglu, Z.; Tawbi, H.A.; Hu, J.; Guan, M.; Frankel, P.H.; Ruel, N.H.; Wilczynski, S.; Christensen, S.; Gandara, D.R.; Chow, W.A. A Randomised Phase II Trial of Selumetinib vs. Selumetinib plus Temsirolimus for Soft-Tissue Sarcomas. Br. J. Cancer 2015, 112, 1644–1651. [Google Scholar] [CrossRef]
- Okuno, S.; Bailey, H.; Mahoney, M.R.; Adkins, D.; Maples, W.; Fitch, T.; Ettinger, D.; Erlichman, C.; Sarkaria, J.N. A Phase 2 Study of Temsirolimus (CCI-779) in Patients with Soft Tissue Sarcomas. Cancer 2011, 117, 3468–3475. [Google Scholar] [CrossRef]
- Chawla, S.P.; Blay, J.; Ray-Coquard, I.L.; Le Cesne, A.; Staddon, A.P.; Milhem, M.M.; Penel, N.; Riedel, R.F.; Bui Nguyen, B.; Cranmer, L.D.; et al. Results of the Phase III, Placebo-Controlled Trial (SUCCEED) Evaluating the MTOR Inhibitor Ridaforolimus (R) as Maintenance Therapy in Advanced Sarcoma Patients (Pts) Following Clinical Benefit from Prior Standard Cytotoxic Chemotherapy (CT). J. Clin. Oncol. 2011, 29, 10005. [Google Scholar] [CrossRef]
- Catalano, A.; Adlesic, M.; Kaltenbacher, T.; Klar, R.F.U.; Albers, J.; Seidel, P.; Brandt, L.P.; Hejhal, T.; Busenhart, P.; Röhner, N.; et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers 2021, 13, 1852. [Google Scholar] [CrossRef]
- Bekki, H.; Kohashi, K.; Maekawa, A.; Yamada, Y.; Yamamoto, H.; Harimaya, K.; Hakozaki, M.; Nabeshima, K.; Iwamoto, Y.; Oda, Y. Elevated Expression of HSP90 and the Antitumor Effect of an HSP90 Inhibitor via Inactivation of the Akt/MTOR Pathway in Undifferentiated Pleomorphic Sarcoma. BMC Cancer 2015, 15, 804. [Google Scholar] [CrossRef]
- Fukuoka, N.; Nakamura, O.; Yamagami, Y.; Nishimura, H.; Ishibashi, Y.; Yamamoto, T. SNX-2112 Induces Apoptosis and Autophagy of Nara-H Cells. Anticancer. Res. 2018, 38, 5177–5181. [Google Scholar] [CrossRef]
- Lahat, G.; Zhang, P.; Zhu, Q.-S.; Torres, K.; Ghadimi, M.; Smith, K.D.; Wang, W.-L.; Lazar, A.J.; Lev, D. The Expression of C-Met Pathway Components in Unclassified Pleomorphic Sarcoma/Malignant Fibrous Histiocytoma (UPS/MFH): A Tissue Microarray Study. Histopathology 2011, 59, 556–561. [Google Scholar] [CrossRef]
- Bekki, H.; Kohashi, K.; Yamada, Y.; Iura, K.; Ishii, T.; Maekawa, A.; Otsuka, H.; Yamamoto, H.; Hakozaki, M.; Nabeshima, K.; et al. Phosphorylation of STAT3 in Undifferentiated Pleomorphic Sarcoma Is Correlated with a Favorable Prognosis. Pathobiology 2017, 84, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.Y.; Wei, Q.; Han, I.; Sato, S.; Azarnier, R.G.-; Whetstone, H.; Poon, R.; Hu, J.; Zheng, F.; Zhang, P.; et al. Hedgehog and Notch Signaling Regulate Self-Renewal of Undifferentiated Pleomorphic Sarcomas. Cancer Res. 2012, 72, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Amm, H.M.; DeVilliers, P.; Srivastava, A.R.; Diniz, M.G.; Siegal, G.P.; MacDougall, M. Mandibular Undifferentiated Pleomorphic Sarcoma: Molecular Analysis of a Primary Cell Population. Clin. Exp. Dent. Res. 2020, 6, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Liu, Y.; Fuller, A.M.; Katti, R.; Ciotti, G.E.; Chor, S.; Alam, M.Z.; Devalaraja, S.; Lorent, K.; Weber, K.; et al. TGFβ and Hippo Pathways Cooperate to Enhance Sarcomagenesis and Metastasis through the Hyaluronan-Mediated Motility Receptor (HMMR). Mol. Cancer Res. 2020, 18, 560–573. [Google Scholar] [CrossRef]
- Rivera-Reyes, A.; Ye, S.; Marino, G.E.; Egolf, S.; Ciotti, G.E.; Chor, S.; Liu, Y.; Posimo, J.M.; Park, P.M.C.; Pak, K.; et al. YAP1 Enhances NF-ΚB-Dependent and Independent Effects on Clock-Mediated Unfolded Protein Responses and Autophagy in Sarcoma. Cell Death Dis. 2018, 9, 1108. [Google Scholar] [CrossRef]
- Ye, S.; Lawlor, M.A.; Rivera-Reyes, A.; Egolf, S.; Chor, S.; Pak, K.; Ciotti, G.E.; Lee, A.C.; Marino, G.E.; Shah, J.; et al. YAP1-Mediated Suppression of USP31 Enhances NFκB Activity to Promote Sarcomagenesis. Cancer Res. 2018, 78, 2705–2720. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT02565758 (accessed on 11 August 2025).
- Washimi, K.; Kasajima, R.; Shimizu, E.; Sato, S.; Okubo, Y.; Yoshioka, E.; Narimatsu, H.; Hiruma, T.; Katayama, K.; Yamaguchi, R.; et al. Histological Markers, Sickle-Shaped Blood Vessels, Myxoid Area, and Infiltrating Growth Pattern Help Stratify the Prognosis of Patients with Myxofibrosarcoma/Undifferentiated Sarcoma. Sci. Rep. 2023, 13, 6744. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Islam, K.; Ruan, J.; He, C.; Chen, P.; Huang, C.; Wang, H.; Dhar, A.; Moness, M.; et al. Hyperactivated YAP1 Is Essential for Sustainable Progression of Renal Clear Cell Carcinoma. Oncogene 2025, 44, 2142–2157. [Google Scholar] [CrossRef]
- Denard, B.; Pavia-Jimenez, A.; Chen, W.; Williams, N.S.; Naina, H.; Collins, R.; Brugarolas, J.; Ye, J. Identification of CREB3L1 as a Biomarker Predicting Doxorubicin Treatment Outcome. PLoS ONE 2015, 10, e0129233. [Google Scholar] [CrossRef]
- Pollack, S.M.; He, Q.; Yearley, J.H.; Emerson, R.; Vignali, M.; Zhang, Y.; Redman, M.W.; Baker, K.K.; Cooper, S.; Donahue, B.; et al. T-cell Infiltration and Clonality Correlate with Programmed Cell Death Protein 1 and Programmed Death-ligand 1 Expression in Patients with Soft Tissue Sarcomas. Cancer 2017, 123, 3291–3304. [Google Scholar] [CrossRef]
- Wunder, J.S.; Lee, M.J.; Nam, J.; Lau, B.Y.; Dickson, B.C.; Pinnaduwage, D.; Bull, S.B.; Ferguson, P.C.; Seto, A.; Gokgoz, N.; et al. Osteosarcoma and Soft-Tissue Sarcomas with an Immune Infiltrate Express PD-L1: Relation to Clinical Outcome and Th1 Pathway Activation. Oncoimmunology 2020, 9, 1737385. [Google Scholar] [CrossRef] [PubMed]
- Budczies, J.; Mechtersheimer, G.; Denkert, C.; Klauschen, F.; Mughal, S.S.; Chudasama, P.; Bockmayr, M.; Jöhrens, K.; Endris, V.; Lier, A.; et al. PD-L1 (CD274) Copy Number Gain, Expression, and Immune Cell Infiltration as Candidate Predictors for Response to Immune Checkpoint Inhibitors in Soft-Tissue Sarcoma. Oncoimmunology 2017, 6, e1279777. [Google Scholar] [CrossRef] [PubMed]
- Munuswamy, N.; Sundar, M.; Krishnan, K.; Chandran, M.; R K, K. Undifferentiated Pleomorphic Sarcoma: A Case Report. Cureus 2024, 16, e73422. [Google Scholar] [CrossRef] [PubMed]
- Zając, A.E.; Czarnecka, A.M.; Rutkowski, P. The Role of Macrophages in Sarcoma Tumor Microenvironment and Treatment. Cancers 2023, 15, 5294. [Google Scholar] [CrossRef]
- Ishihara, S.; Iwasaki, T.; Kohashi, K.; Kawaguchi, K.; Toda, Y.; Fujiwara, T.; Setsu, N.; Endo, M.; Matsumoto, Y.; Nakashima, Y.; et al. Clinical Significance of Signal Regulatory Protein Alpha and T Cell Immunoreceptor with Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibition Motif Domain Expression in Undifferentiated Pleomorphic Sarcoma. J. Cancer Res. Clin. Oncol. 2023, 149, 2425–2436. [Google Scholar] [CrossRef]
- Tang, F.; Tie, Y.; Wei, Y.-Q.; Tu, C.-Q.; Wei, X.-W. Targeted and Immuno-Based Therapies in Sarcoma: Mechanisms and Advances in Clinical Trials. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188606. [Google Scholar] [CrossRef]
- Yuan, L.-L.; Chen, Z.; Qin, J.; Qin, C.-J.; Bian, J.; Dong, R.-F.; Yuan, T.-B.; Xu, Y.-T.; Kong, L.-Y.; Xia, Y.-Z. Single-Cell Sequencing Reveals the Landscape of the Tumor Microenvironment in a Skeletal Undifferentiated Pleomorphic Sarcoma Patient. Front. Immunol. 2022, 13, 1019870. [Google Scholar] [CrossRef]
- Cheung, L.S.; Chen, L.; Oke, T.F.; Schaffer, T.B.; Boudadi, K.; Ngo, J.T.; Gross, J.M.; Kemberling, H.; Diaz, L.A.; Lipson, E.; et al. Anti-PD-1 Elicits Regression of Undifferentiated Pleomorphic Sarcomas with UV-Mutation Signatures. J. Immunother. Cancer 2021, 9, e002345. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Qu, Y.; Chen, X.; Qu, X.; Ye, Y.; Du, X.; Cheng, Y.; Xu, M.; Zhang, H. Case Report: Two Cases of Soft-Tissue Sarcomas: High TMB as a Potential Predictive Biomarker for Anlotinib Combined with Toripalimab Therapy. Front. Immunol. 2022, 13, 832593. [Google Scholar] [CrossRef] [PubMed]
- Italiano, A.; Bellera, C.; D’Angelo, S. PD1/PD-L1 Targeting in Advanced Soft-Tissue Sarcomas: A Pooled Analysis of Phase II Trials. J. Hematol. Oncol. 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.A.; Bolejack, V.; Schuetze, S.; Van Tine, B.A.; Attia, S.; Riedel, R.F.; Hu, J.S.; Davis, L.E.; Okuno, S.H.; Priebat, D.A.; et al. Clinical Activity of Pembrolizumab (P) in Undifferentiated Pleomorphic Sarcoma (UPS) and Dedifferentiated/Pleomorphic Liposarcoma (LPS): Final Results of SARC028 Expansion Cohorts. J. Clin. Oncol. 2019, 37, 11015. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT03123276 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT02406781 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT03946943 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT04447274 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT04480502 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT03307616 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT02301039 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT03116529 (accessed on 11 August 2025).
- Available online: https://Clinicaltrials.Gov/Study/NCT03092323 (accessed on 11 August 2025).
- Guram, K.; Nunez, M.; Einck, J.; Mell, L.K.; Cohen, E.; Sanders, P.D.; Miyauchi, S.; Weihe, E.; Kurzrock, R.; Boles, S.; et al. Radiation Therapy Combined with Checkpoint Blockade Immunotherapy for Metastatic Undifferentiated Pleomorphic Sarcoma of the Maxillary Sinus with a Complete Response. Front. Oncol. 2018, 8, 435. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Richards, A.L.; Conley, A.P.; Woo, H.J.; Dickson, M.A.; Gounder, M.; Kelly, C.; Keohan, M.L.; Movva, S.; Thornton, K.; et al. Pilot Study of Bempegaldesleukin in Combination with Nivolumab in Patients with Metastatic Sarcoma. Nat. Commun. 2022, 13, 3477. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT03282344 (accessed on 11 August 2025).
- Gordon, E.M.; Angel, N.L.; Omelchenko, N.; Chua-Alcala, V.S.; Moradkhani, A.; Quon, D.; Wong, S. A Phase I/II Investigation of Safety and Efficacy of Nivolumab and Nab -Sirolimus in Patients with a Variety of Tumors with Genetic Mutations in the MTOR Pathway. Anticancer. Res. 2023, 43, 1993–2002. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT05103358 (accessed on 11 August 2025).
- Haddox, C.L.; Nathenson, M.J.; Mazzola, E.; Lin, J.-R.; Baginska, J.; Nau, A.; Weirather, J.L.; Choy, E.; Marino-Enriquez, A.; Morgan, J.A.; et al. Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-Tissue Sarcomas: Clinical Outcomes and Biological Correlates. Clin. Cancer Res. 2024, 30, 1281–1292. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT03899805 (accessed on 11 August 2025).
- Pollack, S.M.; Redman, M.W.; Baker, K.K.; Wagner, M.J.; Schroeder, B.A.; Loggers, E.T.; Trieselmann, K.; Copeland, V.C.; Zhang, S.; Black, G.; et al. Assessment of Doxorubicin and Pembrolizumab in Patients with Advanced Anthracycline-Naive Sarcoma. JAMA Oncol. 2020, 6, 1778. [Google Scholar] [CrossRef]
- Ishihara, S.; Iwasaki, T.; Kohashi, K.; Yamada, Y.; Toda, Y.; Ito, Y.; Susuki, Y.; Kawaguchi, K.; Takamatsu, D.; Kawatoko, S.; et al. The Association between the Expression of PD-L1 and CMTM6 in Undifferentiated Pleomorphic Sarcoma. J. Cancer Res. Clin. Oncol. 2021, 147, 2003–2011. [Google Scholar] [CrossRef]
- Pan, H.; Liu, Y.; Fuller, A.M.; Williams, E.F.; Fraietta, J.A.; Eisinger, T.S.K. Collagen Modification Remodels the Sarcoma Tumor Microenvironment and Promotes Resistance to Immune Checkpoint Inhibition. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lee, P.; Malik, D.; Perkons, N.; Huangyang, P.; Khare, S.; Rhoades, S.; Gong, Y.-Y.; Burrows, M.; Finan, J.M.; Nissim, I.; et al. Targeting Glutamine Metabolism Slows Soft Tissue Sarcoma Growth. Nat. Commun. 2020, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, S.; Bourdon, A.; Lafon, M.; Chaire, V.; Frederic, B.; Naït Eldjoudi, A.; Derieppe, M.-A.; Giles, F.; Italiano, A. Dual Inhibition of BET and EP300 Has Antitumor Activity in Undifferentiated Pleomorphic Sarcomas and Synergizes with Ferroptosis Induction. Transl. Oncol. 2025, 52, 102236. [Google Scholar] [CrossRef] [PubMed]
- May, C.D.; Landers, S.M.; Bolshakov, S.; Ma, X.; Ingram, D.R.; Kivlin, C.M.; Watson, K.L.; Sannaa, G.A.A.; Bhalla, A.D.; Wang, W.-L.; et al. Co-Targeting PI3K, MTOR, and IGF1R with Small Molecule Inhibitors for Treating Undifferentiated Pleomorphic Sarcoma. Cancer Biol. Ther. 2017, 18, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Lyko, F. The DNA Methyltransferase Family: A Versatile Toolkit for Epigenetic Regulation. Nat. Rev. Genet. 2018, 19, 81–92. [Google Scholar] [CrossRef]
- Saitoh, Y.; Bureta, C.; Sasaki, H.; Nagano, S.; Maeda, S.; Furukawa, T.; Taniguchi, N.; Setoguchi, T. The Histone Deacetylase Inhibitor LBH589 Inhibits Undifferentiated Pleomorphic Sarcoma Growth via Downregulation of FOS-like Antigen 1. Mol. Carcinog. 2019, 58, 234–246. [Google Scholar] [CrossRef]
- Diaz, L.A.; Coughlin, C.M.; Weil, S.C.; Fishel, J.; Gounder, M.M.; Lawrence, S.; Azad, N.; O’Shannessy, D.J.; Grasso, L.; Wustner, J.; et al. A First-in-Human Phase I Study of MORAb-004, a Monoclonal Antibody to Endosialin in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2015, 21, 1281–1288. [Google Scholar] [CrossRef]
- Tokumoto, H.; Setoguchi, T.; Saitoh, Y.; Sasaki, H.; Nagano, S.; Maeda, S.; Tanimoto, A.; Taniguchi, N. Neurotensin Receptor 1 Is a New Therapeutic Target for Human Undifferentiated Pleomorphic Sarcoma Growth. Mol. Carcinog. 2019, 58, 2230–2240. [Google Scholar] [CrossRef]
- Yu, K.; Wang, L.; Bu, F.; Zhang, J.; Hai, Y.; Hu, R.; Lu, J.; Shi, X. Retroperitoneal Undifferentiated Pleomorphic Sarcoma with Total Nephrectomy: A Case Report and Literature Review. Front. Surg. 2023, 10, 1166764. [Google Scholar] [CrossRef]
- Spalato-Ceruso, M.; Laroche-Clary, A.; Perret, R.; Valverde, Y.; Chaire, V.; Derieppe, M.-A.; Velasco, V.; Bourdon, A.; Italiano, A. Genome-Wide CRISPR/Cas9 Library Screening Identified ATM Signaling Network Genes as Critical Drivers for Resistance to ATR Inhibition in Soft-Tissue Sarcomas: Synthetic Lethality and Therapeutic Implications. Exp. Hematol. Oncol. 2023, 12, 51. [Google Scholar] [CrossRef]
- Toulmonde, M.; Lucchesi, C.; Verbeke, S.; Crombe, A.; Adam, J.; Geneste, D.; Chaire, V.; Laroche-Clary, A.; Perret, R.; Bertucci, F.; et al. High Throughput Profiling of Undifferentiated Pleomorphic Sarcomas Identifies Two Main Subgroups with Distinct Immune Profile, Clinical Outcome and Sensitivity to Targeted Therapies. EBioMedicine 2020, 62, 103131. [Google Scholar] [CrossRef]
- Frankiw, L.; Singh, A.; Peters, C.; Comin-Anduix, B.; Berent-Maoz, B.; Macabali, M.; Shammaie, K.; Quiros, C.; Kaplan-Lefko, P.; Baselga Carretero, I.; et al. Immunotherapy Resistance Driven by Loss of NY-ESO-1 Expression in Response to Transgenic Adoptive Cellular Therapy with PD-1 Blockade. J. Immunother. Cancer 2023, 11, e006930. [Google Scholar] [CrossRef]
- Conley, A.P.; Wang, W.-L.; Livingston, J.A.; Ravi, V.; Tsai, J.-W.; Ali, A.; Ingram, D.R.; Lowery, C.D.; Roland, C.L.; Somaiah, N.; et al. MAGE-A3 Is a Clinically Relevant Target in Undifferentiated Pleomorphic Sarcoma/Myxofibrosarcoma. Cancers 2019, 11, 677. [Google Scholar] [CrossRef]
| Type of Sarcoma | Therapy | Trial Registration Number |
|---|---|---|
| Unresectable or metastatic UPS | Anlotinib Hydrochloride + Toripalimab | NCT03946943 |
| UPS | Envafolimab/Envafolimab + Ipilimumab | NCT04480502 |
| UPS | Mecbotamab vedotin/Mecbotamab vedotin + Nivolumab | NCT03425279 |
| Liposarcoma (LPS), leiomyosarcoma, UPS | Eribulin + Pembrolizumab | NCT03899805 |
| Leiomyosarcoma, UPS | Pembrolizumab + Gemcitabine | NCT03123276 |
| Recurrent or resectable UPS, dedifferentiated liposarcoma (DDLPS) | Nivolumab/Nivolumab + Ipilimumab and radiation therapy | NCT03307616 |
| Advanced angiosarcoma, UPS | Propranolol + Pembrolizumab | NCT05961761 |
| UPS, alveolar soft part sarcoma (ASPS) | Pembrolizumab + Melphalan + Dactinomycin | NCT04332874 |
| Advanced UPS | Recombinant anti-PD-1 humanized monoclonal antibody (609A) | NCT05193214 |
| Unresectable UPS and ASPS | Carilizumab + Apatinib | NCT04447274 |
| Leiomyosarcoma, UPS, DDLPS | CSF1R Inhibitor (DCC-3014) + Avelumab | NCT04242238 |
| Ewing sarcoma, osteosarcoma, UPS | Pembrolizumab + Cabozantinib | NCT05182164 |
| Metastatic or unresectable UPS | doxorubicin and pembrolizumab | NCT06422806 |
| Advanced STS | MAGE-12 Peptide Vaccine | NCT00020267 |
| Advanced or metastatic STS | Brostallicin (PNU-166196A)/Doxorubicin | NCT00410462 |
| Leiomyosarcoma, synovial sarcoma (SS), osteosarcoma, malignant peripheral nerve sheath tumor (MPNST), neurofibrosarcoma, desmoplastic small round cell tumor fibrosarcoma, ASPS, UPS, hemangiopericytoma, chondrosarcoma, epithelioid sarcoma, malignant mesenchymoma | Doxorubicin hydrochloride + Trabectedin | NCT01189253 |
| Leiomyosarcoma, LPS, SS, MPNST, neurofibrosarcoma, ASPS, UPS, hemangiopericytoma, epithelioid sarcoma malignant mesenchymoma | Caelyx (pegylated liposomal doxorubin hydrochloride) + Ifosfamide | NCT00030784 |
| Leiomyosarcoma, LPS, SS, fibrosarcoma, UPS, hemangiopericytoma | Soblidotin | NCT00064220 |
| Leiomyosarcoma, LPS, SS, osteosarcoma, Ewing sarcoma, MPNST, neurofibrosarcoma, UPS, chondrosarcoma | Torisel + liposomal Doxorubicin | NCT00949325 |
| UPS | XmAb®23104 | NCT03752398 |
| Multiple STS subtypes including adult UPS | Gemcitabine + Pazopanib | NCT01532687 |
| Non small cell lung cancer, head and neck squamous cell carcinoma, pancreatic adenocarcinoma, colorectal cancer, UPS, solitary fibrous tumors, DDLPS | OKN4395/OKN4395 + Pembrolizumab | NCT06789172 |
| High grade sarcoma, metastatic leiomyosarcoma, metastatic MPNST, metastatic SS, metastatic UPS, unresectable sarcoma, recurrent leiomyosarcoma, recurrent MPNST, recurrent SS, recurrent UPS | Sapanisertib (MLN0128 [TAK-228]) | NCT02601209 |
| Metastatic UPS and other multiple STS subtypes | Nivolumab/Nivolumab + Ipilimumab | NCT02500797 |
| Recurrent adult STS, recurrent leiomyosarcoma, recurrent LPS, recurrent MPNST, recurrent UPS | MLN8237 (alisertib) | NCT01653028 |
| Osteosarcoma, Ewing sarcoma, MFH, synovial fibrosarcoma, leiomyosarcoma | Reolysis (oncolytic virus) | NCT00503295 |
| Advanced solid tumors, UPS, squamous cell carcinoma of the head and neck, carcinoma of the breast | ABBV-085 | NCT02565758 |
| Multiple STS subtypes including adult UPS | Epirubicin + Ifosfamide + Nivolumab | NCT03277924 |
| Multiple STS subtypes including adult UPS | BO-112/BO-112 + Nivolumab | NCT04420975 |
| Multiple STS subtypes including adult UPS | Talimogene laherparepvec (T-VEC) + Radiotherapy | NCT02923778 |
| Fibrosarcoma, leiomyosarcoma, LPS, myosarcoma, histiocytic sarcoma, SS, lymphangiosarcoma, MPNST, UPS, DDLPS, pleomorphic rhabdomyosarcoma, malignant triton tumor | Radiotherapy + Sequential Doxorubicin and Ifosfamide | NCT03651375 |
| UPS, SS, myxoid LPS and DDLPS | Sintilimab + Doxorubicin + Ifosfamide | NCT04356872 |
| Extraskeletal myxoid chondrosarcoma, leiomyosarcoma, LPS, UPS | Ipilimumab + Nivolumab/Cabozantinib + Nivolumab + Ipilimumab | NCT05836571 |
| Metastatic DDLPS, metastatic leiomyosarcoma, metastatic SS, metastatic UPS, DDLPS, unresectable leiomyosarcoma, unresectable SS, unresectable UPS | Peposertib + liposomal Doxorubicin | NCT05711615 |
| Leiomyosarcoma, MPNST, UPS | Gemcitabine + Docetaxel + Pazopanib | NCT01418001 |
| Leiomyosarcoma, LPS, SS, angiosarcoma, UPS, epithelioid sarcoma, MPNST, fibrosarcoma, pleomorphic rhabdomyosarcoma, endometrial stromal sarcoma, desmoplastic small round cell tumor | Doxorubicin + Ifosfamide | NCT06277154 |
| Metastatic leiomyosarcoma, metastatic SS, metastatic UPS, advanced myxoid LPS, advanced STS, metastatic myxoid LPS, metastatic round cell LPS, metastatic STS, refractory leiomyosarcoma, refractory myxoid LPS, refractory round cell LPS, refractory STS, refractory SS, refractory UPS advanced leiomyosarcoma, advanced SS, advanced UPS, metastatic chondrosarcoma | Itacitinib | NCT03670069 |
| LPS, leiomyosarcoma, UPS | Sunitinib | NCT00400569 |
| UPS, leiomyosarcoma, LPS, SS, angiosarcoma | Olaratumab (Lartruvo) + Doxorubicin | NCT02451943 NCT02584309 |
| Multiple STS subtypes including adult UPS | Ribociclib + Doxorubicin | NCT03009201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesovaya, E.A.; Fetisov, T.I.; Bokhyan, B.Y.; Senchenko, M.A.; Rogozhin, D.V.; Maksimova, V.P.; Demko, A.N.; Belitsky, G.A.; Yakubovskaya, M.G.; Kirsanov, K.I. Genetic Heterogeneity of Undifferentiated Pleomorphic Sarcoma: Is There Potential for Targeted Therapy? Cancers 2025, 17, 3613. https://doi.org/10.3390/cancers17223613
Lesovaya EA, Fetisov TI, Bokhyan BY, Senchenko MA, Rogozhin DV, Maksimova VP, Demko AN, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Genetic Heterogeneity of Undifferentiated Pleomorphic Sarcoma: Is There Potential for Targeted Therapy? Cancers. 2025; 17(22):3613. https://doi.org/10.3390/cancers17223613
Chicago/Turabian StyleLesovaya, Ekaterina A., Timur I. Fetisov, Beniamin Yu. Bokhyan, Maria A. Senchenko, Dmitry V. Rogozhin, Varvara P. Maksimova, Anna N. Demko, Gennady A. Belitsky, Marianna G. Yakubovskaya, and Kirill I. Kirsanov. 2025. "Genetic Heterogeneity of Undifferentiated Pleomorphic Sarcoma: Is There Potential for Targeted Therapy?" Cancers 17, no. 22: 3613. https://doi.org/10.3390/cancers17223613
APA StyleLesovaya, E. A., Fetisov, T. I., Bokhyan, B. Y., Senchenko, M. A., Rogozhin, D. V., Maksimova, V. P., Demko, A. N., Belitsky, G. A., Yakubovskaya, M. G., & Kirsanov, K. I. (2025). Genetic Heterogeneity of Undifferentiated Pleomorphic Sarcoma: Is There Potential for Targeted Therapy? Cancers, 17(22), 3613. https://doi.org/10.3390/cancers17223613

