Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology
Abstract
Simple Summary
Abstract
1. Introduction
1.1. The Global Cancer Burden: Incidence, Mortality, and Key Determinants
1.2. Regional Disparities and the Role of Lifestyle and Environmental Factors
2. Cancer and Organ Dysfunction: Pathophysiology and Systemic Implications
2.1. Impact of Cancer on Cardiac Function
2.2. Pathophysiology of Heart Failure
3. Mechanisms Underlying the Pathophysiology of Cancer-Induced Cardiac Dysfunction
3.1. Role of Cytokines
3.2. Role of Reactive Oxygen Species
3.3. Role of Angiotensin II
3.4. Role of Gut Microbiota and Its Metabolites
3.5. Role of Exosomes and Micrornas
3.5.1. Exosomal Cargo and Its Cardiovascular Impact
3.5.2. MicroRNAs in Exosomal Cardio-Protection and Cardiotoxicity
4. Gaps in Knowledge and Future Directions
5. Diagnosis of Cardiac Dysfunctions
6. Clinical Trials to Target Cancer Chemotherapy Induced Cardiac Cachexia
7. Therapeutic Approaches
7.1. Individualized Treatment
7.2. Preclinical Models
7.3. Role of Stem Cells in Cardiac Regeneration
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Cancer Observatory. International Agency for Research on Cancer; World Health Organization Globocan: Geneva, Switzerland, 2022.
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Schmidt, S.F.; Rohm, M.; Herzig, S.; Diaz, M.B. Cancer cachexia: More than skeletal muscle wasting. Trends Cancer 2018, 4, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Zhan, Y.; Pan, Z.; Liu, Q.; Yuan, W. Sarcopenia is a prognostic factor of adverse effects and mortality in patients with tumour: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2024, 15, 2295–2310. [Google Scholar] [CrossRef]
- Brown, K.A.; Scherer, P.E. Update on adipose tissue and cancer. Endocr. Rev. 2023, 44, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Gertz, M.A.; Dispenzieri, A. Systemic amyloidosis recognition, prognosis, and therapy: A systematic review. JAMA 2020, 324, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Mancusi, R.; Monje, M. The neuroscience of cancer. Nature 2023, 618, 467–479. [Google Scholar] [CrossRef]
- Sonis, S.T.; Elting, L.S.; Keefe, D.; Peterson, D.E.; Schubert, M.; Hauer-Jensen, M.; Bekele, B.N.; Raber-Durlacher, J.; Donnelly, J.P.; Rubenstein, E.B. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2004, 100, 1995–2025. [Google Scholar] [CrossRef]
- Klassen, O.; Schmidt, M.E.; Ulrich, C.M.; Schneeweiss, A.; Potthoff, K.; Steindorf, K.; Wiskemann, J. Muscle strength in breast cancer patients receiving different treatment regimes. J. Cachexia Sarcopenia Muscle 2017, 8, 305–316. [Google Scholar] [CrossRef]
- Liao, Z.; Tan, Z.W.; Zhu, P.; Tan, N.S. Cancer-associated fibroblasts in tumor microenvironment–Accomplices in tumor malignancy. Cell. Immun. 2019, 343, 103729. [Google Scholar] [CrossRef]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef]
- Perez, I.E.; Taveras Alam, S.; Hernandez, G.A.; Sancassani, R. Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clin. Med. Insights 2019, 29, 1179546819866445. [Google Scholar] [CrossRef]
- Karekar, P.; Jensen, H.N.; Russart, K.L.; Ponnalagu, D.; Seeley, S.; Sanghvi, S.; Smith, S.A.; Pyter, L.M.; Singh, H.; Gururaja Rao, S. Tumor-induced cardiac dysfunction: A potential role of ROS. Antioxidants 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Barbar, T.; Mahmood, S.S.; Liu, J.E. Cardiomyopathy Prevention in Cancer Patients. Cardiol. Clin. 2019, 37, 441–447. [Google Scholar] [CrossRef]
- Cozma, A.; Sporis, N.D.; Lazar, A.L.; Buruiana, A.; Ganea, A.M.; Malinescu, T.V.; Berechet, B.M.; Fodor, A.; Sitar-Taut, A.V.; Vlad, V.C.; et al. Cardiac Toxicity Associated with Immune Checkpoint Inhibitors: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 10948. [Google Scholar] [CrossRef] [PubMed]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- Bloom, M.W.; Vo, J.B.; Rodgers, J.E.; Ferrari, A.M.; Nohria, A.; Deswal, A.; Cheng, R.K.; Kittleson, M.M.; Upshaw, J.N.; Palaskas, N.; et al. Cardio-Oncology and Heart Failure: A Scientific Statement from the Heart Failure Society of America. J. Card. Fail. 2025, 31, 415–455. [Google Scholar] [CrossRef] [PubMed]
- Avula, V.; Sharma, G.; Kosiborod, M.N.; Vaduganathan, M.; Neilan, T.G.; Lopez, T.; Dent, S.; Baldassarre, L.; Scherrer-Crosbie, M.; Barac, A.; et al. SGLT2 Inhibitor Use and Risk of Clinical Events in Patients with Cancer Therapy-Related Cardiac Dysfunction. JACC Heart Fail. 2024, 12, 67–78. [Google Scholar] [CrossRef]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Shen, Y.; Chen, L.; Hu, W.; Yan, Y.; Feng, B.; Xiang, L.; Zhu, Y.; Jiang, C.; et al. Rescue of cardiac dysfunction during chemotherapy in acute myeloid leukaemia by blocking IL-1α. Eur. Heart J. 2024, 45, 2235–2250. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Rolski, F.; Tkacz, K.; Węglarczyk, K.; Kwiatkowski, G.; Pelczar, P.; Jaźwa-Kusior, A.; Bar, A.; Kuster, G.M.; Chłopicki, S.; Siedlar, M.; et al. TNF-α protects from exacerbated myocarditis and cardiac death by suppressing expansion of activated heart-reactive CD4+ T cells. Cardiovasc. Res. 2024, 120, 82–94. [Google Scholar] [CrossRef]
- Belloum, Y.; Rannou-Bekono, F.; Favier, F.B. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity. Oncol. Rep. 2017, 37, 2543–2552. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, A.; Paudice, F.; D’Angelo, G.; Perrotta, G.; Carannante, A.; Attanasio, U.; Iengo, M.; Fiore, F.; Tocchetti, C.G.; Mercurio, V.; et al. New-Onset Cancer in the HF Population: Epidemiology, Pathophysiology, and Clinical Management. Curr. Heart Fail. Rep. 2021, 18, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Shao, L.; Spitz, D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 2014, 122, 1–67. [Google Scholar] [PubMed]
- Kohan, R.; Collin, A.; Guizzardi, S.; Tolosa de Talamoni, N.; Picotto, G. Reactive oxygen species in cancer: A paradox between pro- and anti-tumour activities. Cancer Chemother. Pharmacol. 2020, 86, 1–13. [Google Scholar] [CrossRef]
- Shefa, U.; Jeong, N.Y.; Song, I.O.; Chung, H.J.; Kim, D.; Jung, J.; Huh, Y. Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen. Res. 2019, 14, 749–756. [Google Scholar] [CrossRef]
- Al-Hussaniy, H.A.; Alburghaif, A.H.; Alkhafaje, Z.; Al-Zobaidy, M.A.-H.J.; Alkuraishy, H.M.; Mostafa-Hedeab, G.; Azam, F.; Al-Samydai, A.-M.; Al-Tameemi, Z.S.; Naji, M.A.; et al. Chemotherapy-induced cardiotoxicity: A new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs. J. Med. Life 2023, 16, 491–500. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Kong, C.Y.; Guo, Z.; Song, P.; Zhang, X.; Yuan, Y.P.; Teng, T.; Yan, L.; Tang, Q.Z. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int. J. Biol. Sci. 2022, 18, 760–770. [Google Scholar] [CrossRef]
- Nair, M.; Samidurai, A.; Das, A.; Kakar, S.S.; Kukreja, R.C. Ovarian cancer and the heart: Pathophysiology, chemotherapy-induced cardiotoxicity, and new therapeutic strategies. J. Ovarian Res. 2025, 18, 72. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, Y.; Wang, S.; He, X.; Liu, M.; Bai, B.; Tian, C.; Sun, R.; Yu, T.; Chu, X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol. 2021, 46, 102089. [Google Scholar] [CrossRef]
- Sheibani, M.; Azizi, Y.; Shayan, M.; Nezamoleslami, S.; Eslami, F.; Farjoo, M.H.; Ahmad Reza Dehpour, A.R. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc. Toxicol. 2022, 22, 292–310. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Bojmar, L.; Chen, H.; Li, Z.; Tobias, G.C.; Hu, M.; Homan, E.A.; Lucotti, S.; Zhao, F.; et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 2023, 618, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation 2016, 133, 1104–1114. [Google Scholar] [CrossRef]
- Prem, P.N.; Sivakumar, B.; Boovarahan, S.R.; Kurian, G.A. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury—A systematic review. Phytomedicine 2022, 101, 154123. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- Chen, Q.M.; Maltagliati, A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genom. 2018, 50, 77–97. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid. Redox Signal. 2018, 28, 711–732. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020, 40, 158–189. [Google Scholar] [CrossRef]
- Xie, S.; Xu, S.C.; Deng, W.; Tang, Q. Metabolic landscape in cardiac aging: Insights into molecular biology and therapeutic implications. Signal Transduct. Target. Ther. 2023, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, R.; Jiang, J.; Hu, Y.; Li, H.; Wang, Y. ACEI/ARB and beta-blocker therapies for preventing cardiotoxicity of antineoplastic agents in breast cancer: A systematic review and meta-analysis. Heart Fail. Rev. 2023, 28, 1405–1415. [Google Scholar] [CrossRef]
- Lewinter, C.; Nielsen, T.H.; Edfors, L.R.; Linde, C.; Bland, J.M.; LeWinter, M.; Cleland, J.G.F.; Køber, L.; Braunschweig, F.; Mansson-Broberg, A. Stematic review and meta-analysis of beta-blockers and renin-angiotensin system inhibitors for preventing left ventricular dysfunction due to anthracyclines or trastuzumab in patients with breast cancer. Eur. Heart J. 2022, 43, 2562–2569. [Google Scholar] [CrossRef]
- Goulas, K.; Farmakis, D.; Constantinidou, A.; Kadoglou, N.P.E. Cardioprotective Agents for the Primary Prevention of Trastuzumab-Associated Cardiotoxicity: A Systematic Review and Meta-Analysis. Pharmaceuticals 2023, 16, 983. [Google Scholar] [CrossRef]
- Keshavarzian, E.; Sadighpour, T.; Mortazavizadeh, S.M.; Soltani, M.; Motevalipoor, A.F.; Khamas, S.S.; Moazen, M.; Kogani, M.; Amin Hashemipour, S.M.; Hosseinpour, H.; et al. Prophylactic Agents for Preventing Cardiotoxicity Induced Following Anticancer Agents: A Systematic Review and Meta-Analysis of Clinical Trials. Rev. Recent Clin. Trials 2023, 18, 112–122. [Google Scholar] [CrossRef]
- Cheuk, D.K.; Sieswerda, E.; van Dalen, E.C.; Postma, A.; Kremer, L.C. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst. Rev. 2016, 2016, CD008011. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Vincelette, N.D.; Abraham, I. Cardioprotective role of β-blockers and angiotensin antagonists in early-onset anthracyclines-induced cardiotoxicity in adult patients: A systematic review and meta-analysis. Postgrad. Med. J. 2015, 91, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Caspani, F.; Tralongo, A.C.; Campiotti, L.; Asteggiano, R.; Guasti, L.; Squizzato, A. Prevention of anthracycline-induced cardiotoxicity: A systematic review and meta-analysis. Int. Emerg. Med. 2021, 16, 477–486. [Google Scholar] [CrossRef]
- Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart 2018, 104, 971–977. [Google Scholar] [CrossRef]
- Mennuni, S.; Rubattu, S.; Pierelli, G.; Tocci, G.; Fofi, C.; Volpe, M. Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage. J. Hum. Hypertens. 2014, 28, 74–79. [Google Scholar] [CrossRef]
- Saha, S.; Singh, P.K.; Roy, P.; Kakar, S.S. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients. Cells 2022, 11, 990. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Taslim, N.A.; Yusuf, M.; Ambari, A.M.; Del Rosario Puling, I.M.; Ibrahim, F.Z.; Hardinsyah, H.; Kurniawan, R.; Gunawan, W.B.; Mayulu, N.; Joseph, V.F.F.; et al. Anti-Inflammatory, Antioxidant, Metabolic and Gut Microbiota Modulation Activities of Probiotic in Cardiac Remodeling Condition: Evidence from Systematic Study and Meta-Analysis of Randomized Controlled Trials. Probiotics Antimicrob. Proteins 2023, 5, 1049–1061. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Leonard, W.; Beasley, J.T.; Fang, Z.; Zhang, P.; Ranadheera, C.S. Anthocyanins-gut microbiota-health axis: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 7563–7588. [Google Scholar] [CrossRef]
- Qi, X.; Yun, C.; Sun, L.; Xia, J.; Wu, Q.; Wang, Y.; Wang, L.; Zhang, Y.; Liang, X.; Wang, L.; et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 2019, 25, 1225–1233. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Engen, P.A.; Keshavarzian, A. Circadian Rhythm and the Gut Microbiome. Int. Rev. Neurobiol. 2016, 131, 193–205. [Google Scholar] [PubMed]
- Hassan, N.E.; El-Masry, S.A.; El Shebini, S.M.; Ahmed, N.H.; Mehanna, N.S.; Abdel Wahed, M.M.; Amine, D. Effect of weight loss program using prebiotics and probiotics on body composition, physique, and metabolic products: Longitudinal intervention study. Sci. Rep. 2024, 14, 10960. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Majeed, O.S.; Gaaz, T.S.; Akpoghelie, P.O.; Isoje, E.F.; Igbuku, U.A.; Owheruo, J.O.; Opiti, R.A.; Garba, Y. A review on probiotics and dietary bioactives: Insights on metabolic well-being, gut microbiota, and inflammatory responses. Food Chem. Adv. 2025, 6, 100919. [Google Scholar] [CrossRef]
- Bulut, E.C.; Erol Kutucu, D.; Üstünova, S.; Ağırbaşlı, M.; Dedeakayoğulları, H.; Tarhan, Ç.; Kapucu, A.; Yeğen, B.Ç.; Demirci Tansel, C.; Gürel Gürevin, E. A narrative review on the role of gut microbiome, dietary strategies, and supplements in managing metabolic syndrome. Explor. Drug Sci. 2025, 3, 1008105. [Google Scholar] [CrossRef]
- Bulut, E.C.; Erol Kutucu, D.; Üstünova, S.; Ağırbaşlı, M.; Dedeakayoğulları, H.; Tarhan, Ç.; Kapucu, A.; Yeğen, B.Ç.; Demirci Tansel, C.; Gürel Gürevin, E. Synbiotic supplementation ameliorates anxiety and myocardial ischaemia-reperfusion injury in hyperglycaemic rats by modulating gut microbiota. Exp. Physiol. 2024, 109, 1882–1895. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Lv, X.; Liu, W.; Zhu, S.; Wang, Y.; Xu, H. Unraveling the intricate roles of exosomes in cardiovascular diseases: A comprehensive review of physiological significance and pathological implications. Int. J. Mol. Sci. 2023, 24, 15677. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, S.; Singh, M.; Homme, R.P.; Tyagi, S.C. Interoception, heart failure and exosomal cargo as potential biomarkers. Gene Rep. 2023, 33, 101849. [Google Scholar] [CrossRef]
- Pushpakumar, S.; Singh, M.; Zheng, Y.; Akinterinwa, O.E.; Mokshagundam, S.P.L.; Sen, U.; Kalra, D.K.; Tyagi, S.C. Renal Denervation Helps Preserve the Ejection Fraction by Preserving Endocardial-Endothelial Function during Heart Failure. Int. J. Mol. Sci. 2023, 24, 7302. [Google Scholar] [CrossRef]
- Beaumier, A.; Robinson, S.R.; Robinson, N.; Lopez, K.E.; Meola, D.M.; Barber, L.G.; Bulmer, B.J.; Calvalido, J.; Rush, J.E.; Yeri, A.; et al. Extracellular vesicular microRNAs as potential biomarker for early detection of doxorubicin-induced cardiotoxicity. J. Vet. Intern. Med. 2020, 34, 1260–1271. [Google Scholar] [CrossRef]
- Houbois, C.P.; Nolan, M.; Somerset, E.; Shalmon, T.; Esmaeilzadeh, M.; Lamacie, M.M.; Amir, E.; Brezden-Masley, C.; Koch, C.A.; Thevakumaran, Y.; et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: Comparison with echocardiography. JACC Cardiovasc. Imag. 2021, 14, 962–974. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chung, J.; Byun, Y.; Kim, K.H.; An, S.H.; Kwon, K. Mesenchymal stem cell-derived small extracellular vesicles protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin expression via the miR-199a-3p-Akt-Sp1/p53 signaling pathway. Int. J. Mol. Sci. 2021, 22, 7102. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Chang, B.; Li, L.; Hu, T.; Ye, J.; Chen, H.; Li, W.; Zan, T.; Hou, M. MicroRNA therapy confers anti-senescent effects on doxorubicin-related cardiotoxicity by intracellular and paracrine signaling. Aging 2021, 13, 25256–25270. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ye, Z.; Ma, J.; Gu, Q.; Teng, J.; Gong, X. MicroRNA 133b alleviates doxorubicin induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. Int. J. Mol. Med. 2021, 48, 125. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS) Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. Cardiovasc. Imag. 2022, 23, e333–e465. [Google Scholar]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Rossello, X.; Dorresteijn, J.A.; Janssen, A.; Lambrinou, E.; Scherrenberg, M.; Bonnefoy-Cudraz, E.; Cobain, M.; Piepoli, M.F.; Visseren, F.L.; Dendale, P. Risk prediction tools in cardiovascular disease prevention: A report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur. J. Cardiovasc. Nurs. 2019, 18, 534–544. [Google Scholar] [CrossRef]
- Bhatia, S. Genetics of anthracycline cardiomyopathy in cancer survivors. JACC CardioOncol. 2020, 2, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Kim, Y.; Restrepo-Cordoba, M.A.; Lunde, I.G.; Wakimoto, H.; Smith, A.M.; Toepfer, C.N.; Getz, K.; Gorham, J.; Patel, P.; et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 2019, 140, 31–41. [Google Scholar] [CrossRef]
- Salem, J.E.; Nguyen, L.S.; Moslehi, J.J.; Ederhy, S.; Lebrun-Vignes, B.; Roden, D.M.; Funck-Brentano, C.; Gougis, P. Anticancer drug-induced life-threatening ventricular arrhythmias: A World Health Organization pharmacovigilance study. Eur. Heart J. 2021, 42, 3915–3928. [Google Scholar] [CrossRef]
- Porta-Sánchez, A.; Gilbert, C.; Spears, D.; Amir, E.; Chan, J.; Nanthakumar, K.; Thavendiranathan, P. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: A systematic review. J. Am. Heart Assoc. 2017, 6, e007724. [Google Scholar] [CrossRef]
- Zardavas, D.; Suter, T.M.; Van Veldhuisen, D.J.; Steinseifer, J.; Noe, J.; Lauer, S.; Al-Sakaff, N.; Piccart-Gebhart, M.J.; de Azambuja, E. Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: A herceptin adjuvant study cardiac marker substudy. J. Clin. Oncol. 2017, 35, 878–884. [Google Scholar]
- DeMichele, A.; Shah, P.; Clark, A.S.; Fox, K.; Matro, J.; Bradbury, A.R.; Knollman, H.; Getz, K.D.; Armenian, S.H.; Januzzi, J.L.; et al. Changes in cardiovascular biomarkers with breast cancer therapy and associations with cardiac dysfunction. J. Am. Heart Assoc. 2020, 9, e014708. [Google Scholar]
- Plana, J.C.; Thavendiranathan, P.; Bucciarelli-Ducci, C.; Lancellotti, P. Multi-modality imaging in the assessment of cardiovascular toxicity in the cancer patient. JACC Cardiovasc. Imag. 2018, 11, 1173–1186. [Google Scholar] [CrossRef]
- Zhang, K.W.; Finkelman, B.S.; Gulati, G.; Narayan, H.K.; Upshaw, J.; Narayan, V.; Plappert, T.; Englefield, V.; Smith, A.M.; Zhang, C.; et al. Abnormalities in 3-dimensional left ventricular mechanics with anthracycline chemotherapy are associated with systolic and diastolic dysfunction. JACC Cardiovasc. Imag. 2018, 11, 1059–1068. [Google Scholar] [CrossRef]
- Dhir, V.; Yan, A.T.; Nisenbaum, R.; Sloninko, J.; Connelly, K.A.; Barfett, J.; Haq, R.; Kirpalani, A.; Chan, K.K.W.; Petrella, T.M.; et al. Assessment of left ventricular function by CMR versus MUGA scans in breast cancer patients receiving trastuzumab: A prospective observational study. Int. J. Cardiovasc. Imag. 2019, 35, 2085–2093. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Negishi, T.; Coté, M.A.; Penicka, M.; Massey, R.; Cho, G.Y.; Hristova, K.; Vinereanu, D.; Popescu, B.A.; Izumo, M.; et al. Single versus standard multiview assessment of global longitudinal strain for the diagnosis of cardiotoxicity during cancer therapy. JACC Cardiovasc. Imag. 2018, 11, 1109–1118. [Google Scholar] [CrossRef]
- Narayan, H.K.; French, B.; Khan, A.M.; Plappert, T.; Hyman, D.; Bajulaiye, A.; Domchek, S.; DeMichele, A.; Clark, A.; Matro, J.; et al. Noninvasive measures of ventricular–arterial coupling and circumferential strain predict cancer therapeutics–related cardiac dysfunction. JACC Cardiovasc. Imag. 2016, 9, 1131–1141. [Google Scholar] [CrossRef]
- Lopez-Mattei, J.C.; Yang, E.H.; Ferencik, M.; Baldassarre, L.A.; Dent, S.; Budoff, M.J. Cardiac computed tomography in cardio-oncology. JACC Cardio Oncol. 2021, 3, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Imboden, M.T.; Harber, M.P.; Whaley, M.H.; Finch, W.H.; Bishop, D.L.; Kaminsky, L.A. Cardiorespiratory fitness and mortality in healthy men and women. J. Am. Coll. Cardiol. 2018, 72, 2283–2292. [Google Scholar] [CrossRef] [PubMed]
- Shaddy, R.E.; George, A.T.; Jaecklin, T.; Lochlainn, E.N.; Thakur, L.; Agrawal, R.; Solar-Yohay, S.; Chen, F.; Rossano, J.W.; Severin, T.; et al. Systematic Literature Review on the Incidence and Prevalence of Heart Failure in Children and Adolescents. Pediatr. Cardiol. 2018, 39, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Price, J.F. Congestive Heart Failure in Children. Pediatr. Rev. 2019, 40, 60–70. [Google Scholar] [CrossRef]
- Power, J.R.; Alexandre, J.; Choudhary, A.; Ozbay, B.; Hayek, S.; Asnani, A.; Tamura, Y.; Aras, M.; Cautela, J.; Thuny, F.; et al. Electrocardiographic manifestations of immune checkpoint inhibitor myocarditis. Circulation 2021, 144, 1521–1523, Erratum in Circulation 2021, 144, e490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zlotoff, D.A.; Awadalla, M.; Mahmood, S.S.; Nohria, A.; Hassan, M.Z.O.; Thuny, F.; Zubiri, L.; Chen, C.L.; Sullivan, R.J.; et al. Major adverse cardiovascular events and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation 2020, 141, 2031–2034. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Chen, D.H.; Guha, A.; Mackenzie, S.; Walker, J.M.; Roddie, C. CAR T cell therapy-related cardiovascular outcomes and management: Systemic disease or direct cardiotoxicity? JACC CardioOncol. 2020, 2, 97–109. [Google Scholar] [CrossRef]
- Ghadri, J.R.; Wittstein, I.S.; Prasad, A.; Sharkey, S.; Dote, K.; Akashi, Y.J.; Cammann, V.L.; Crea, F.; Galiuto, L.; Desmet, W.; et al. International expert consensus document on Takotsubo syndrome (part I): Clinical characteristics, diagnostic criteria, and pathophysiology. Eur. Heart J. 2018, 39, 2032–2046. [Google Scholar] [CrossRef]
- Kelm, N.Q.; Straughn, A.R.; Kakar, S.S. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS ONE 2020, 15, e0236680. [Google Scholar] [CrossRef]
- Ausoni, S.; Calamelli, S.; Saccà, S.; Azzarello, G. How progressive cancer endangers the heart: An intriguing and underestimated problem. Cancer Metastasis Rev. 2020, 39, 535–552. [Google Scholar] [CrossRef]
- Becker, R.O.; Chapin, S.; Sherry, R. Regeneration of the ventricular myocardium in amphibians. Nature 1974, 248, 145–147. [Google Scholar] [CrossRef]
- Haubner, B.J.; Schneider, J.; Schweigmann, U.; Schuetz, T.; Dichtl, W.; Velik-Salchner, C.; Stein, J.I.; Penninger, J.M. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 2016, 118, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, B.A.; Druid, H.; Jovinge, S.; Frisén, J. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Senyo, S.E.; Steinhauser, M.L.; Pizzimenti, C.L.; Yang, V.K.; Cai, L.; Wang, M.; Wu, T.D.; Guerquin-Kern, J.L.; Lechene, C.P.; Lee, R.T. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493, 433–436. [Google Scholar] [CrossRef]
- Mollova, M.; Bersell, K.; Walsh, S.; Savla, J.; Das, L.T.; Park, S.Y.; Silberstein, L.E.; Dos Remedios, C.G.; Graham, D.; Colan, S.; et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 2013, 110, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, R.A.; Essawy, M.M.; Barkat, M.A.; Awaad, A.K.; Thabet, E.H.; Hamed, H.A.; Elkafrawy, H.; Khalil, N.A.; Sallam, A.; Kholief, M.A.; et al. Cardiac stem cells: Current knowledge and future prospects. World J. Stem Cells 2022, 14, 1. [Google Scholar] [CrossRef]
- He, L.; Nguyen, N.B.; Ardehali, R.; Zhou, B. Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress. Circulation 2020, 142, 275–291. [Google Scholar] [CrossRef]
- Beltrami, A.P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114, 763–776. [Google Scholar] [CrossRef]
- Cai, C.L.; Molkentin, J.D. The elusive progenitor cell in cardiac regeneration: Slip slidin away. Circ. Res. 2017, 120, 400–406. [Google Scholar] [CrossRef]
- Oh, H.; Bradfute, S.B.; Gallardo, T.D.; Nakamura, T.; Gaussin, V.; Mishina, Y.; Pocius, J.; Michael, L.H.; Behringer, R.R.; Garry, D.J.; et al. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 2003, 100, 12313–12318. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, R.J.; Sargent, M.A.; Lin, S.J.; Palpant, N.J.; Murry, C.E.; Molkentin, J.D. Genetic lineage tracing of Sca-1+ cells reveals endothelial but not myogenic contribution to the murine heart. Circulation 2018, 138, 2931–2939. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.J.; Maher, T.J.; Li, Q.; Garry, M.G.; Sorrentino, B.P.; Martin, C.M. Abcg2-labeled cells contribute to different cell populations in the embryonic and adult heart. Stem Cells Dev. 2016, 25, 277–284. [Google Scholar] [CrossRef]
- Valiente-Alandi, I.; Albo-Castellanos, C.; Herrero, D.; Sanchez, I.; Bernad, A. Bmi1+ cardiac progenitor cells contribute to myocardial repair following acute injury. Stem Cell Res. Ther. 2016, 7, 100. [Google Scholar] [CrossRef]
- Zhang, L.; Sultana, N.; Yan, J.; Yang, F.; Chen, F.; Chepurko, E.; Yang, F.C.; Du, Q.; Zangi, L.; Xu, M.; et al. Cardiac Sca-1+ cells are not intrinsic stem cells for myocardial development, renewal, and repair. Circulation 2018, 138, 2919–2930. [Google Scholar] [CrossRef]
- Singh, M.; Babbarwal, A.; Pushpakumar, S.; Tyagi, S.C. Interoception, cardiac health, and heart failure: The potential for artificial intelligence (AI)-driven diagnosis and treatment. Physiol. Rep. 2025, 13, e70146. [Google Scholar] [CrossRef] [PubMed]
Cancer-induced toxicities (cachexia, organ dysfunction). | Therapy-induced toxicities (cachexia and organ dysfunction). | |
Primary cause | Tumor-secreted factors, systemic inflammation, metabolic disruption. | Direct organ toxicity from chemotherapeutics, radiation, and immunotherapy. |
Mechanism | Chronic inflammation, catabolic signaling, and muscle/fat wasting. | Oxidative stress, cellular damage, hormonal imbalance, and inflammation amplification. |
Effects | Muscle waste (skeletal and cardiac), weight loss, anemia, and immune suppression. | LV dysfunction, reduced LVEF, heart failure, immune suppression, cognitive impairment. |
Organ involvement | Multiple organs including skeletal muscle, heart, liver, and kidney. | Primarily heart (LV systolic function), and other organs via systemic toxicity. |
Diagnosis/Monitoring | Clinical assessment, cachexia staging, and metabolic markers. | Echocardiography (LVEF, Global Longitudinal Strain. GLS), biomarkers, cardiac imaging. |
Treatment Approaches | Nutritional support, and anti-inflammatory agents under study. | Cardio-protective drugs (ACE inhibitors, beta-blockers), early detection, and long-term monitoring. |
Trial Identifier | Title | Primary Outcome Measure | Status/Phase | Cohort |
---|---|---|---|---|
NCT06268535 | Identification of Anticancer Drugs Associated with Cancer Therapy-related Cardiac Dysfunction: A Pharmaco vigilance Study | Disproportionality analysis of individual case safety reports linking heart failure or cardiac dysfunction with cancer therapies | Completed | Patients with heart failure and cancer therapy-related dysfunction |
NCT05851053 | Breast Cancer Long-term Outcomes on Cardiac Functioning: a Longitudinal Study | Incidence of left ventricular systolic dysfunction | Recruiting | Breast cancer survivors |
NCT05803889 | Characterization and Kinetic of Chemotherapy-induced Cardiovascular Toxicity in Breast Cancer | Assessment of myocardial deformation (rest and submaximal effort) to characterize systolic and diastolic dysfunction | Recruiting | Stage I–III breast cancer patients receiving EC + paclitaxel |
NCT02086695 | Early Detection of Broken Hearts in Cancer Patients Bevacizumab, Sunitinib and Heart Failure | Changes in tissue velocity imaging, myocardial strain and strain rate, twist/torsion, and diastolic function indices | Completed | Adults (18–90 years) with metastatic renal cell carcinoma or colorectal cancer |
NCT01434134 | Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy | Change in left ventricular ejection fraction assessed via cardiac MRI | Completed | Women (18–70 years) receiving adjuvant chemotherapy |
NCT03790943 | Cardiac Dysfunction in Childhood Cancer Survivors | Left ventricular ejection fraction measured by conventional echocardiography | Recruiting | Cancer survivors diagnosed at age 0–20 in Switzerland |
NCT01904331 | Breast Cancer Long-term Outcome of Cardiac Dysfunction (BLOC) | Association between cardiac dysfunction and therapy type; comparison with matched controls | Completed | Breast cancer patients |
NCT05930418 | Cardiovascular Magnetic Resonance Prognosticators in Pediatric Oncology Patients with Sepsis | Feasibility and prognostic value of cardiac MRI in pediatric oncology patients with sepsis | Recruiting | Patients aged 9–25 undergoing cancer treatment |
NCT01641562 | Diagnosis and Prediction of Taxanes Induced Cardiac Dysfunction | Change in LVEF post-treatment with taxanes; cardiotoxicity defined as LVEF < 55% or >10% reduction from baseline | Completed | Breast cancer patients > 18 years |
NCT02496260 | Biomarkers and Cardiac MRI as Early Indicators of Cardiac Exposure Following Breast Radiotherapy | Subclinical cardiac abnormalities on MRI correlated with subsequent cardiac events | Completed | Breast cancer patients > 18 years receiving radiotherapy |
NCT05806138 | A Study of Vericiguat in People with Breast Cancer and Cancer Therapy-Related Cardiac Dysfunction | Change in cardiorespiratory fitness (VO2 peak) | Recruiting | Breast cancer patients > 18 years |
NCT01554943 | Late Cardiac Evaluation of the Three Arm Belgian Trial Involving Node-positive Early Breast Cancer Patients | Incidence of asymptomatic (LVEF < 50%, NYHA I) and symptomatic cardiac events | Completed | Breast cancer survivors (18–90 years) without recurrence |
NCT02605512 | Breast Cancer and Cardiotoxicity Induced by Radiotherapy: the BACCARAT Study | Number of patients with reduced myocardial function by echocardiography | Completed | Surgically treated breast cancer patients (50–70 years) receiving adjuvant radiotherapy |
NCT02494453 | Pilot Study of Biomarkers and Cardiac MRI as Early Indicators of Cardiac Exposure Following Breast Radiotherapy | Subclinical cardiac abnormalities on MRI correlated with cardiac events | Completed | Breast cancer patients > 18 years undergoing left-sided radiotherapy |
NCT03297346 | Early Detection of Cardiovascular Changes After Radiotherapy for Breast Cancer | Decreased myocardial function assessed by echocardiography | Completed | Female unilateral breast cancer patients (40–75 years) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Singh, P.K.; Roy, P.; Vemuri, V.; Ratajczak, M.Z.; Singh, M.; Kakar, S.S. Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology. Cancers 2025, 17, 3225. https://doi.org/10.3390/cancers17193225
Saha S, Singh PK, Roy P, Vemuri V, Ratajczak MZ, Singh M, Kakar SS. Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology. Cancers. 2025; 17(19):3225. https://doi.org/10.3390/cancers17193225
Chicago/Turabian StyleSaha, Sarama, Praveen K. Singh, Partha Roy, Vasa Vemuri, Mariusz Z. Ratajczak, Mahavir Singh, and Sham S. Kakar. 2025. "Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology" Cancers 17, no. 19: 3225. https://doi.org/10.3390/cancers17193225
APA StyleSaha, S., Singh, P. K., Roy, P., Vemuri, V., Ratajczak, M. Z., Singh, M., & Kakar, S. S. (2025). Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology. Cancers, 17(19), 3225. https://doi.org/10.3390/cancers17193225