Comparison of Localization Methods in Cushing Disease—Could [11C]C-Methionine PET/CT Replace MRI or BIPSS?
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Inclusion Criteria
- ACTH-dependent Cushing syndrome
- Age over 18.
- Signing informed consent to participate in the study.
2.2. Study Exclusion Criteria
- Pregnancy or lactation.
- Previous pituitary surgery.
- Allergy to gadolinium contrast.
- Lack of signing informed consent.
- Age below 18.
2.3. PET Protocol
2.4. Methionine Protocol
2.5. BIPSS Protocol
2.6. MRI
2.7. Statistical Analysis
3. Results
4. Discussion
5. Study Weaknesses and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reincke, M.; Fleseriu, M. Cushing syndrome: A review. JAMA 2023, 330, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.; Gatto, F.; Wildemberg, L.E.; Fleseriu, M. Cushing’s syndrome. Lancet 2023, 402, 2237–2252. [Google Scholar] [CrossRef] [PubMed]
- Ferriere, A.; Tabarin, A. Cushing’s syndrome: Treatment and new therapeutic approaches. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101381. [Google Scholar] [CrossRef]
- Yorke, E.; Atiase, Y.; Akpalu, J.; Sarfo-Kantanka, O. Screening for Cushing syndrome at the primary care level: What every general practitioner must know. Int. J. Endocrinol. 2017, 2017, 1547358. [Google Scholar] [CrossRef]
- Chen, K.; Chen, S.; Lu, L.; Zhu, H.; Zhang, X.; Tong, A.; Pan, H.; Wang, R.; Lu, Z. An optimized pathway for the differential diagnosis of ACTH-dependent Cushing’s syndrome based on low-dose dexamethasone suppression test. Front. Endocrinol. 2021, 12, 720823. [Google Scholar] [CrossRef]
- Nieman, L.K. Molecular derangements and the diagnosis of ACTH-dependent Cushing’s syndrome. Endocr. Rev. 2022, 43, 852–877. [Google Scholar] [CrossRef]
- Ceccato, F.; Barbot, M.; Mondin, A.; Boscaro, M.; Fleseriu, M.; Scaroni, C. Dynamic testing for differential diagnosis of ACTH-dependent Cushing syndrome: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2023, 108, e178–e188. [Google Scholar] [CrossRef]
- Shaikh, J.; Raymond, A.; Somasundaram, A.; Loya, M.F.; Nezami, N. Novel protocol for CT-guided percutaneous ablation of hyperplastic adrenal glands in Cushing syndrome. Cardiovasc. Interv. Radiol. 2022, 45, 1041–1043. [Google Scholar] [CrossRef]
- Bonneville, J.F.; Potorac, I.; Petrossians, P.; Tshibanda, L.; Beckers, A. Pituitary MRI in Cushing’s disease—An update. J. Neuroendocrinol. 2022, 34, e13123. [Google Scholar] [CrossRef]
- Juszczak, A.; Morris, D.; Grossman, A. Cushing’s syndrome. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: Portland, OR, USA, 2000; Updated 5 September 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279000/ (accessed on 8 July 2025). [PubMed]
- Valizadeh, M.; Ahmadi, A.R.; Ebadinejad, A.; Rahmani, F.; Abiri, B. Diagnostic accuracy of bilateral inferior petrosal sinus sampling using desmopressin or corticotropic-releasing hormone in ACTH-dependent Cushing’s syndrome: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 881–892. [Google Scholar] [CrossRef]
- de Almeida, T.S.; Rodrigues, T.D.C.; Costenaro, F.; Scaffaro, L.A.; Farenzena, M.; Gastaldo, F.; Czepielewski, M.A. Enhancing Cushing’s disease diagnosis: Exploring the impact of desmopressin on ACTH gradient during BIPSS. Front. Endocrinol. 2023, 14, 1224001. [Google Scholar] [CrossRef]
- Zanzonico, P. Physics instrumentation, and radiation safety and regulations. In Clinical Nuclear Medicine; Springer: Heidelberg, Germany, 2020; pp. 3–48. [Google Scholar]
- Berger, A. How does it work? Positron emission tomography. BMJ 2003, 326, 1449. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Koole, M.; Armstrong, I.; Krizsan, A.K.; Stromvall, A.; Visvikis, D.; Sattler, B.; Nekolla, S.G.; Dickson, J. EANM guidelines for PET-CT and PET-MR routine quality control. Z. Med. Phys. 2023, 33, 103–113. [Google Scholar] [CrossRef]
- Kapoor, V.; McCook, B.M.; Torok, F.S. An introduction to PET-CT imaging. Radiographics 2004, 24, 523–543. [Google Scholar] [CrossRef]
- Broski, S.M.; Goenka, A.H.; Kemp, B.J.; Johnson, G.B. Clinical PET/MRI: 2018 update. AJR Am. J. Roentgenol. 2018, 211, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Glaudemans, A.W.; Enting, R.H.; Heesters, M.A.; Dierckx, R.A.J.O.; van Rheenen, R.W.J.; Walenkamp, A.M.E.; Slart, R.H.J.A. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 615–635. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.-A.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Navik, U.; Sheth, V.G.; Khurana, A.; Jawalekar, S.S.; Allawadhi, P.; Gaddam, R.R.; Bhatti, J.S.; Tikoo, K. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res. Rev. 2021, 72, 101500. [Google Scholar] [CrossRef]
- Harris, S.M.; Davis, J.C.; Snyder, S.E.; Butch, E.R.; Vāvere, A.L.; Kocak, M.; Shulkin, B.L. Evaluation of the biodistribution of 11C-methionine in children and young adults. J. Nucl. Med. 2013, 54, 1902–1908. [Google Scholar] [CrossRef]
- Leung, K. l-[methyl-11C]Methionine. In Molecular Imaging and Contrast Agent Database (MICAD) [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004–2013; Updated 21 December 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK23696/ (accessed on 8 July 2025).
- Jeltema, H.R.; van Dijken, B.R.J.; Tamási, K.; Drost, G.; Heesters, M.A.A.M.; van der Hoorn, A.; Glaudemans, A.W.J.M.; van Dijk, J.M.C. 11C-methionine uptake in meningiomas after stereotactic radiotherapy. Ann. Nucl. Med. 2024, 38, 596–606. [Google Scholar] [CrossRef]
- Chung, J.K.; Kim, Y.K.; Kim, S.K.; Lee, Y.; Paek, S.; Yeo, J.; Jeong, J.; Lee, D.; Jung, H.; Lee, M. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 176–182. [Google Scholar] [CrossRef]
- Ninatti, G.; Sollini, M.; Bono, B.; Gozzi, N.; Fedorov, D.; Antunovic, L.; Gelardi, F.; Navarria, P.; Politi, L.S.; Pessina, F.; et al. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro-Oncology 2022, 24, 1546–1556. [Google Scholar] [CrossRef]
- van Dijken, B.R.J.; Ankrah, A.O.; Stormezand, G.N.; Dierckx, R.A.J.O.; van Laar, P.J.; van der Hoorn, A. Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma. PLoS ONE 2022, 17, e0264387. [Google Scholar] [CrossRef] [PubMed]
- Pogosian, K.; Karonova, T.; Ryzhkova, D.; Yanevskaya, L.; Tsoy, U.; Yudina, O.; Berkovich, G.; Dalmatova, A.; Grineva, E. 11C-methionine PET/CT and conventional imaging techniques in the diagnosis of primary hyperparathyroidism. Quant. Imaging Med. Surg. 2023, 13, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Durma, A.D.; Saracyn, M.; Kołodziej, M.; Jóźwik-Plebanek, K.; Kamiński, G. The use of [11C]C-methionine in diagnostics of endocrine disorders with focus on pituitary and parathyroid glands. Pharmaceuticals 2025, 18, 229. [Google Scholar] [CrossRef]
- Furnica, R.M.; Devuyst, F.; Mathey, C.; Constantinescu, S.M.; De Herdt, C.; Alexopoulou, O.; Lhommel, R.; Maiter, D. Diagnostic value of 11C-methionine PET-CT imaging in persistent or recurrent Cushing’s disease after surgery. J. Clin. Endocrinol. Metab. 2025, 110, 2845–2852. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Z.; Zhu, D.; Wang, X.; Chen, J.; Zhu, Y.; Wang, H. Clinical application of combination [11C]C-methionine and [13N]N-ammonia PET/CT in recurrent functional pituitary adenomas with negative MRI or [18F]F-FDG PET/CT. BMC Endocr. Disord. 2024, 24, 19. [Google Scholar] [CrossRef]
- Pruis, I.J.; Verburg, F.A.; Balvers, R.K.; Harteveld, A.A.; Feelders, R.A.; Vernooij, M.W.; Smits, M.; Neggers, S.J.; van Zanten, S.E.V. [18F]FET PET/MRI: An Accurate Technique for Detection of Small Functional Pituitary Tumors. J. Nucl. Med. 2024, 65, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Novruzov, F.; Aliyev, A.; Wan, M.Y.S.; Syed, R.; Mehdi, E.; Aliyeva, I.; Giammarile, F.; Bomanji, J.B.; Kayani, I. The value of [68Ga]Ga-DOTA-TATE PET/CT in diagnosis and management of suspected pituitary tumors. Eur. J. Hybrid Imaging 2021, 5, 10. [Google Scholar] [CrossRef]
- Pandey, S.; Walia, R.; Kaur, G.; Pandav, K.; Rather, I.; Rana, N.; Sahoo, S.; Mittal, B.R.; Shukla, J. Using the PET/CT radiotracer [68Ga]Ga-DOTA-mDesmo to target V1b receptors and localize corticotropinoma in Cushing’s disease. Commun. Med. 2025, 5, 367. [Google Scholar] [CrossRef]
- Iskandar, A.; Zemczak, A.; Pełka, K.; Kunikowska, J. Is [68Ga]Ga-DOTA-TATE PET/CT useful in the diagnosis of patients suspected of ectopic Cushing’s syndrome? Endokrynol. Pol. 2024, 75, 649–654. [Google Scholar] [CrossRef]
- Kołodziej, M.; Saracyn, M.; Lubas, A.; Dziuk, M.; Durma, A.D.; Smoszna, J.; Zelichowski, G.; Niemczyk, S.; Kamiński, G. Usefulness of PET/CT with carbon-11-labeled methionine in the diagnosis of tertiary hyperparathyroidism. Nutrients 2022, 15, 188. [Google Scholar] [CrossRef]
- Berkmann, S.; Roethlisberger, M.; Mueller, B.; Christ-Crain, M.; Mariani, L.; Nitzsche, E.; Juengling, F. Selective resection of Cushing microadenoma guided by preoperative hybrid 18-fluoroethyl-L-tyrosine and 11-C-methionine PET/MRI. Pituitary 2021, 24, 878–886. [Google Scholar] [CrossRef]
- Feng, Z.; He, D.; Mao, Z.; Wang, Z.; Zhu, Y.; Zhang, X.; Wang, H. Utility of 11C-methionine and 18F-FDG PET/CT in patients with functioning pituitary adenomas. Clin. Nucl. Med. 2016, 41, e130–e134. [Google Scholar] [CrossRef]
- Ikeda, H.; Abe, T.; Watanabe, K. Usefulness of composite methionine-positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J. Neurosurg. 2010, 112, 750–755. [Google Scholar] [CrossRef]
- Ishida, A.; Kaneko, K.; Minamimoto, R.; Hotta, M.; Inoshita, N.; Takano, K.; Yamada, S. Clinical decision-making based on 11C-methionine PET in recurrent Cushing’s disease with equivocal MRI findings. J. Neurosurg. 2023, 139, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, O.; Steuwe, A.; Gillett, D.; Hoole, A.C.; Powlson, A.S.; A Donnelly, N.; Burnet, N.G.; Antoun, N.M.; Cheow, H.; Mannion, R.J.; et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome. Eur. J. Endocrinol. 2015, 173, M107–M120. [Google Scholar] [CrossRef]
- Ito, K.; Matsuda, H.; Kubota, K. Imaging Spectrum and Pitfalls of 11C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions. Korean J. Radiol. 2016, 17, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Minamimoto, R.; Miwa, K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: Radiomics approach with random forest classifier. Sci. Rep. 2019, 9, 15666. [Google Scholar] [CrossRef] [PubMed]
n = 21 | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
MRI | 59 | 75 | 91 | 70 |
[11C]C-MET PET/CT | 23 | 13 | 30 | 91 |
BIPSS | 100 | 100 | 100 | 0 |
n = 18 | Unit | M | SD |
---|---|---|---|
Age | y.o. | 50.6 | 14.5 |
Activity | MBq | 541.7 | 40.7 |
SUVmax | - | 3.74 | 0.87 |
Volume | mL | 5.2 | 2.7 |
Morning cortisol concentration | µg/dL | 27.4 | 20.6 |
Night cortisol concentration | µg/dL | 20.0 | 12.9 |
ODST | µg/dL | 15.5 | 7.5 |
Increase in ACTH on the adenoma side | x | 7.1 | 5.4 |
Initial ACTH IPSS/peripheral | x | 9.1 | 6.5 |
Med. | IQR | ||
Peak ACTH IPSS/peripheral | x | 21.2 | 22.8 |
DHEAS | µg/dL | 321.0 | 345.0 |
UFC | µg/24 h | 240.7 | 347.2 |
ACTH | pg/mL | 66.4 | 76.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durma, A.D.; Saracyn, M.; Kołodziej, M.; Zieliński, G.; Zięcina, P.; Narloch, J.; Kamiński, G. Comparison of Localization Methods in Cushing Disease—Could [11C]C-Methionine PET/CT Replace MRI or BIPSS? Cancers 2025, 17, 3147. https://doi.org/10.3390/cancers17193147
Durma AD, Saracyn M, Kołodziej M, Zieliński G, Zięcina P, Narloch J, Kamiński G. Comparison of Localization Methods in Cushing Disease—Could [11C]C-Methionine PET/CT Replace MRI or BIPSS? Cancers. 2025; 17(19):3147. https://doi.org/10.3390/cancers17193147
Chicago/Turabian StyleDurma, Adam Daniel, Marek Saracyn, Maciej Kołodziej, Grzegorz Zieliński, Piotr Zięcina, Jerzy Narloch, and Grzegorz Kamiński. 2025. "Comparison of Localization Methods in Cushing Disease—Could [11C]C-Methionine PET/CT Replace MRI or BIPSS?" Cancers 17, no. 19: 3147. https://doi.org/10.3390/cancers17193147
APA StyleDurma, A. D., Saracyn, M., Kołodziej, M., Zieliński, G., Zięcina, P., Narloch, J., & Kamiński, G. (2025). Comparison of Localization Methods in Cushing Disease—Could [11C]C-Methionine PET/CT Replace MRI or BIPSS? Cancers, 17(19), 3147. https://doi.org/10.3390/cancers17193147