Can Advances in Artificial Intelligence Strengthen the Role of Intraoperative Radiotherapy in the Treatment of Cancer?
Simple Summary
Abstract
1. Introduction
2. Main Clinical Achievements of IORT
2.1. IORT in Breast Cancer
2.2. IORT in Rectal Cancer
2.3. IORT in Sarcomas
2.4. IORT in Pancreatic Cancer
2.5. IORT in Other Cancers
3. Technological Advances in Intraoperative Radiotherapy Planning and Delivery
Automated Segmentation and Instant Dose Distribution in IORT: Advances in AI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IORT | Intraoperative radiotherapy |
AI | Artificial Intelligence |
IOERT | Intraoperative electron radiotherapy |
ISIORT | International Society of Intraoperative Radiation Therapy |
CT | Computer tomography |
LC | Local recurrence |
IBTR | In-breast tumor recurrence |
APBI | Accelerate partial breast irradiation |
WBI | Whole breast irradiation |
PBI | Partial breast irradiation |
LARC | Locally advanced rectal cancer |
LAPC | Locally advanced pancreatic cancer |
GTV | Gross tumor volume |
CTV | Clinical target volume |
EBRT | External beam radiotherapy |
TPS | Treatment planning system |
MRI | Magnetic resonance |
ANN | Artificial neural networks |
OAR | Organ at risk |
IMRT | Intensity modulated radiotherapy |
References
- Abe, M.; Takahashi, M. Intraoperative radiotherapy: The japanese experience. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 863–868. [Google Scholar] [CrossRef]
- Gunderson, L.L. Intraoperative Irradiation: Techniques and Results, 2nd ed.; Humana Press: Totowa, NJ, USA, 2011. [Google Scholar]
- Kruszyna-Mochalska, M.; Bijok, M.; Pawałowski, B. Zalecenia Polskiego Towarzystwa Fizyki Medycznej dotyczące kontroli jakości w radioterapii śródoperacyjnej promieniowaniem elektronowym (IOERT) za pomocą mobilnych akceleratorów. Fizyka Medyczna/Medical Physics 2019, 8, 7–25. [Google Scholar]
- Pincet, L.; Fanchette, A.; Elmers, J.; Bourhis, J.; Lambercy, K.; Romano, E. Systematic Review of Intraoperative Radiotherapy (IORT) in Head and Neck Oncology: Past, Present, and Future Perspectives. Cancers 2025, 17, 2124. [Google Scholar] [CrossRef]
- Krengli, M.; Calvo, F.A.; Sedlmayer, F.; Sole, C.V.; Fastner, G.; Alessandro, M.; Maluta, S.; Corvò, R.; Sperk, E.; Litoborosky, M.; et al. Clinical and technical characteristics of intraoperative radiotherapy. Analysis of the ISIORT-Europe database. Strahlenther. Onkol. 2013, 189, 729–737. [Google Scholar] [CrossRef]
- Krengli, M.; Sedlmayer, F.; Calvo, F.A.; Sperl, E.; Pisani, C.; Sole, C.V.; Fastner, G.; Gonzalez, G.; Wenz, F.I. ISIORT pooled analysis 2013 update: Clinical technical characteristics of intraoperative radiotherapy. Transl. Cancer Res. 2014, 3, 48–58. [Google Scholar]
- Krengli, M. ISIORT-presentation: European Registry achievements. In Proceedings of the ESTRO 2021—Multidisciplinary Pre-Meeting Course on IOeRT, Madrid, Spain, 27–31 August 2021; 2021. [Google Scholar]
- Nafiss, N.; Heiranizadeh, N.; Shirinzadeh-Dastgiri, A.; Vakili-Ojarood, M.; Naser, A.; Danaei, M.; Saberi, A.; Aghasipour, M.; Shiri, A.; Yeganegi, M.; et al. The Application of Artificial Intelligence in Breast Cancer. Eurasian J. Med. Oncol. 2024, 8, 9. [Google Scholar] [CrossRef]
- Pisani, C.; Ramella, M.; Boldorini, R.; Loi, G.; Billia, M.; Boccafoschi, F.; Volpe, A.; Krengli, M. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci. Rep. 2020, 10, 7050. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, X.; Kong, S.; Zha, Z.; Huang, M.; Li, C.; Li, N.; Ge, F.; Chen, W. Intraoperative radiotherapy in breast cancer: Alterations to the tumor microenvironment and subsequent biological outcomes (Review). Mol. Med. Rep. 2023, 28, 231. [Google Scholar] [CrossRef] [PubMed]
- Zaleska, K.; Przybyla, A.; Kulcenty, K.; Wichtowski, M.; Mackiewicz, A.; Suchorska, W.; Murawa, D. Wound fluids affect miR-21, miR-155 and miR-221 expression in breast cancer cell lines, and this effect is partially abrogated by intraoperative radiation therapy treatment. Oncol. Lett. 2017, 14, 4029–4036. [Google Scholar] [CrossRef] [PubMed]
- Kulcenty, K.; Piotrowsky, I.; Zaleska, K.; Witchtowski, M.; Wroblewska, J.; Murawa, D.; Suchorska, W.M. Wound fluids collected postoperatively from patients with breast cancer induce epithelial to mesenchymal transition but intraoperative radiotherapy impairs this effect by activating the radiation-induced bystander effect. Sci. Rep. 2019, 9, 7891. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Y.; Li, Y.; Qin, Y.; Zhou, Z.; Yang, H.; Sun, Y. Oxygen-Independent Radiodynamic Therapy: Radiation-Boosted Chemodynamics for Reprogramming the Tumor Immune Environment and Enhancing Antitumor Immune Response. ACS Appl. Mater. Interfaces 2024, 16, 21546–21556. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Zhou, Z.; Li, Z.; Yan, J.; Wang, Y. From foe to friend: Rewiring oncogenic pathways through artificial selenoprotein to combat immune-resistant tumor. J. Pharm. Anal. 2025, 101322. [Google Scholar] [CrossRef]
- Fastner, G.; Sedlmayer, F.; Merz, F.; Deutschmann, H.; Reitsamer, R.; Menzel, C.; Stierle, C.; Farmini, A.; Fischer, T.; Ciabattoni, A.; et al. IORT with electrons as boost strategy during breast conserving therapy in limited stage breast cancer: Long term results of an ISIORT pooled analysis. Radiother. Oncol. 2013, 108, 279–286. [Google Scholar] [CrossRef]
- Orecchia, R.; Veronesi, U.; Maisonneuve, P.; Galimberti, V.E.; Lazzari, R.; Veronesi, P.; Jereczek-Fossa, B.A.; Cattani, F.; Sangalli, C.; Luini, A.; et al. Intraoperative irradiation for early breast cancer (ELIOT): Long-term recurrence and survival outcomes from a single-centre, randomised, phase 3 equivalence trial. Lancet Oncol. 2021, 22, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.S.; Bulsara, M.; Wenz, F.; Sperk, E.; Massarut, S.; Alvarado, M.; Williams, N.R.; Brew-Graves, C.; Bernstein, M.; Holmes, D.; et al. The TARGIT-A Randomized Trial: TARGIT-IORT Versus Whole Breast Radiation Therapy: Long-Term Local Control and Survival. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.A.; Gomez-Espi, M.; Diaz-Gonzalez, J.; Alvarado, A.; Cantalapiedra, L.; Marcos, P.; Matute, R.; Martinez, N.E.; Lozano, M.A.; Herranz, R. Intraoperative presacral electron boost following preoperative chemoradiation in T3-4Nx rectal cancer: Initial local effects and clinical outcome analysis. Radiother. Oncol. 2002, 62, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Kusters, M.; Valentini, V.; Calvo, F.A.; Krempien, R.; Nieuwenhuijzen, G.A.; Martijn, H.; Doglietto, G.B.; Del Valle, E.; Roeder, F.; Buchler, M.W.; et al. Results of European pooled analysis of IORT-containing multimodality treatment for locally advanced rectal cancer: Adjuvant chemotherapy prevents local recurrence rather than distant metastases. Ann. Oncol. 2010, 21, 1279–1284. [Google Scholar]
- Masaki, T.; Matsuoka, H.; Kobayashi, T.; Abe, N.; Takayama, M.; Tonari, A.; Sugiyama, M.; Atomi, Y. Quality assurance of pelvic autonomic nerve-preserving surgery for advanced lower rectal cancer--preliminary results of a randomized controlled trial. Langenbecks Arch. Surg. 2010, 395, 607–613. [Google Scholar] [CrossRef]
- Dubois, J.B.; Bussieres, E.; Richaud, P.; Rouanet, P.; Becauarn, Y.; Mathoulin-Pelissier, S.; Saint-Aubert, B.; Ychou, M. Intra-operative radiotherapy of rectal cancer: Results of the French multi-institutional randomized study. Radiother. Oncol. 2011, 98, 298–303. [Google Scholar] [CrossRef]
- Sindelar, W.F.; Kinsella, T.J.; Chen, P.W.; De Laney, T.F.; Tepper, J.E.; Rosemberg, S.A.; Glatstein, E. Intraoperative radiotherapy in retroperitoneal sarcomas. Final results of a prospective, randomized, clinical trial. Arch. Surg. 1993, 128, 402–410. [Google Scholar] [CrossRef]
- Calvo, F.A.; Sole, C.V.; Polo, A.; Cambeiro, M.; Montero, A.; Alvarez, A.; Cuervo, M.; Jilian, M.S.; Martinez-Monge, R. Limb-sparing management with surgical resection, external-beam and intraoperative electron-beam radiation therapy boost for patients with primary soft tissue sarcoma of the extremity: A multicentric pooled analysis of long-term outcomes. Strahlenther Onkol. 2014, 190, 891–898. [Google Scholar] [CrossRef]
- Roeder, F.; Alldinger, I.; Uhl, M.; Saleh-Ebrahimi, L.; Schimmack, S.; Mechtersheimer, G.; Buchler, M.W.; Debus, J.; Krempien, R. Intraoperative Electron Radiation Therapy in Retroperitoneal Sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 516–527. [Google Scholar] [CrossRef]
- Sindelar, W.F.; Kinsella, T.J.; Chen, P.W.; Tepper, J.E.; Rosemberg, S.A.; Glatstein, E. Preoperative Dose-Escalated Intensity-Modulated Radiotherapy (IMRT) and Intraoperative Radiation Therapy (IORT) in Patients with Retroperitoneal Soft-Tissue Sarcoma: Final Results of a Clinical Phase I/II Trial. Cancers 2023, 15, 2747. [Google Scholar]
- Tepper, J.E.; Noyes, D.; Krall, J.M.; Sause, W.T.; Wolkov, H.B.; Dobelbower, R.R.; Thomson, J.; Owens, J.; Hanks, G.E. Intraoperative radiation therapy of pancreatic carcinoma: A report of RTOG-8505. Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 1145–1149. [Google Scholar] [CrossRef]
- Valentini, V.; Calco, F.; Reni, M.; Krempien, R.; Sedlmayer, F.; Buchler, M.W.; Di Carlo, V.; Doglietto, G.B.; Fastner, G.; Garcia-Sabrido, J.L.; et al. Intra-operative radiotherapy (IORT) in pancreatic cancer: Joint analysis of the ISIORT-Europe experience. Radiother. Oncol. 2009, 91, 54–59. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.W.; Lan, Z.M.; Du, Y.X.; Qiu, G.T.; Zhang, L.P.; Gu, Z.T.; Li, Z.Z.; Li, G.; Shao, H.B.; et al. Intraoperative radiotherapy vs concurrent chemoradiotherapy in the treatment of patients with locally advanced pancreatic cancer. Pancreatology 2021, 21, 1052–1058. [Google Scholar] [CrossRef]
- Veronesi, U.; Orecchia, R.; Luini, A.; Galimberti, V.; Zurrida, S.; Intra, M.; Veronesi, P.; Arnone, P.; Lonardi, M.C.; Ciocca, M.; et al. Intraoperative radiotherapy during breast conserving surgery: A study on 1,822 cases treated with electrons. Breast Cancer Res. Treat. 2010, 124, 141–151. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Joseph, D.J.; Tobias, J.S.; Bulsara, M.; Wenz, F.; Saunders, C.; Alvarado, M.; Flyger, H.L.; Massarut, S.; Eirmann, W.; et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): An international, prospective, randomised, non-inferiority phase 3 trial. Lancet 2010, 376, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Polgár, C.; Van Limbergen, E.; Potter, R.; Kovacs, G.; Polo, A.; Lyczek, J.; Hildebrandt, G.; Niehoff, P.; Guinot, J.L.; Guedea, F.; et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother. Oncol. 2010, 94, 264–273. [Google Scholar]
- Smith, B.D.; Arthur, D.W.; Buchholez, T.A.; Haffty, B.G.; Hahn, C.A.; Hardenbergh, P.H.; Julian, T.B.; Marks, L.B.; Todor, D.A.; Vicini, F.A.; et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). J. Am. Coll. Surg. 2009, 209, 269–277. [Google Scholar] [CrossRef]
- Correa, C.; Harris, E.E.; Leonardo, M.C.; Smith, B.D.; Tagian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract. Radiat. Oncol. 2017, 7, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, U.; Orecchia, R.; Maisonneuve, P.; Viale, G.; Rotmensz, N.; Sangalli, C.; Luini, A.; Veronesi, P.; Galimberti, V.; Zurrida, S.; et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): A randomised controlled equivalence trial. Lancet Oncol. 2013, 14, 1269–1277. [Google Scholar] [CrossRef]
- Fastner, G.; Gaisberger, C.; Kaiser, J.; Scherer, P.; Ciabattoni, A.; Pethoukova, A.; Sperk, E.; Poortmans, P.; Calvo, F.A.; Sedlmayer, F.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy with electrons (IOERT) in breast cancer. Radiother. Oncol. 2020, 149, 150–157. [Google Scholar] [CrossRef]
- Ravani, L.V.; Calomeni, P.; Wang, M.; Deng, D.; Speers, C.; Zaorsky, N.; Shah, C. Comparison of partial-breast irradiation and intraoperative radiation to whole-breast irradiation in early-stage breast cancer patients: A Kaplan-Meier-derived patient data meta-analysis. Breast Cancer Res. Treat. 2024, 203, 1–12. [Google Scholar] [CrossRef]
- He, J.; Chen, S.; Ye, L.; Sun, Y.; Dai, Y.; Song, X.; Lin, X.; Xu, R. Intraoperative Radiotherapy as a Tumour-Bed Boost Combined with Whole Breast Irradiation Versus Conventional Radiotherapy in Patients with Early-Stage Breast Cancer: A Systematic Review and Meta-analysis. Ann. Surg. Oncol. 2023, 30, 8436–8452. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, R.; Lu, Y.; Lin, Y.; Zhang, Y.; Shao, N.; Wang, S.; Nie, D.; Shan, Z. The Efficacy of Low-Kilovoltage X-Rays Intraoperative Radiation as Boost for Breast Cancer: A Systematic Review and Meta-Analysis. Breast J. 2023, 2023, 9035266. [Google Scholar] [CrossRef] [PubMed]
- Haddock, M.G.; Miller, R.C.; Nelson, H.; Pemberton, J.H.; Dozois, E.J.; Alberts, S.R.; Gunderson, L.L. Combined modality therapy including intraoperative electron irradiation for locally recurrent colorectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 143–150. [Google Scholar] [CrossRef]
- Krempien, R.; Roeder, F.; Oertel, S.; Roebel, M.; Weitz, J.; Hensley, F.W.; Timle, C.; Funk, A.; Bischof, M.; Zabel-Du Bois, A.; et al. Long-term results of intraoperative presacral electron boost radiotherapy (IOERT) in combination with total mesorectal excision (TME) and chemoradiation in patients with locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1143–1151. [Google Scholar] [CrossRef]
- Masaki, T.; Matsuoka, H.; Kishiki, T.; Kojima, K.; Aso, N.; Beniya, A.; Tonari, A.; Takayama, M.; Abe, N.; Sunami, E. Intraoperative radiotherapy for resectable advanced lower rectal cancer-final results of a randomized controlled trial (UMIN000021353). Langenbecks Arch. Surg. 2020, 405, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, S.R. The Role of Intraoperative Radiotherapy Treatment of Locally Advanced Rectal Cancer. Clin. Colon Rectal Surg. 2024, 37, 239–247. [Google Scholar] [CrossRef]
- Calvo, F.A.; Sole, C.V.; Rutten, H.J.; Dries, W.J.; Lozano, M.A.; Cambeiro, M.; Poortmans, P.; González-Bayón, L. ESTRO/ACROP IORT recommendations for intraoperative radiation therapy in locally recurrent rectal cancer. Clin. Transl. Radiat. Oncol. 2020, 24, 41–48. [Google Scholar] [CrossRef]
- Davis, A.M.; O’Sullivan, B.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Hammond, A.; Benk, V.; Kandel, R.; et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother. Oncol. 2005, 75, 48–53. [Google Scholar] [CrossRef]
- Seddon, B.; La Grange, F.; Simoes, R.; Stacey, C.; Shelly, S.; Forsyth, S.; White, L.; Candish, C.; Dickinson, P.; Miah, A.; et al. The IMRiS Trial: A Phase 2 Study of Intensity Modulated Radiation Therapy in Extremity Soft Tissue Sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 978–989. [Google Scholar] [CrossRef]
- Roeder, F.; Krempien, R. Intraoperative radiation therapy (IORT) in soft-tissue sarcoma. Radiat. Oncol. 2017, 12, 20. [Google Scholar] [CrossRef]
- Azinovic, I.; Monge, R.M.; Aristu, J.J.; Salgado, E.; Villafranca, E.; Hidalgo, O.F.; Amillo, S.; Julian, M.S.; Villas, C.; Aramendίa, J.M.; et al. Intraoperative radiotherapy electron boost followed by moderate doses of external beam radiotherapy in resected soft-tissue sarcoma of the extremities. Radiother. Oncol. 2003, 67, 331–337. [Google Scholar] [CrossRef]
- Petersen, I.A.; Haddock, M.G.; Donohue, J.H.; Nagorney, D.M.; Grill, J.P.; Sargent, D.J.; Gunderson, L.L. Use of intraoperative electron beam radiotherapy in the management of retroperitoneal soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 469–475. [Google Scholar] [CrossRef]
- Oertel, S.; Treiber, M.; Zahlten-Hinguranage, A.; Eichin, S.; Roeder, F.; Funk, A.; Hensley, F.W.; Timke, C.; Niethammer, A.G.; Huber, P.E.; et al. Intraoperative electron boost radiation followed by moderate doses of external beam radiotherapy in limb-sparing treatment of patients with extremity soft-tissue sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R.; Roeder, F.; Oertel, S.; Weitz, J.; Hensley, F.W.; Timke, C.; Funk, A.; Lindel, K.; Harms, W.; Buchler, M.W.; et al. Intraoperative electron-beam therapy for primary and recurrent retroperitoneal soft-tissue sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 773–779. [Google Scholar] [CrossRef]
- Roeder, F.; Morillo, V.; Saleh-Ebrahimi, L.; Calvo, F.A.; Poortmans, P.; Albiach, C.F. Intraoperative radiation therapy (IORT) for soft tissue sarcoma—ESTRO IORT Task Force/ACROP recommendations. Radiother. Oncol. 2020, 150, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Van De Voorde, L.; Delrue, L.; Van Eijkeren, M.; De Meerleer, G. Radiotherapy and surgery-an indispensable duo in the treatment of retroperitoneal sarcoma. Cancer 2011, 117, 4355–4364. [Google Scholar] [CrossRef]
- Callegaro, D.; Raut, C.P.; Ajayi, T.; Strauss, D.; Bonvalot, S.; Ng, D.; Stoeckle, E.; Fairweather, M.; Rutkowski, P.; Van Houdt, W.J.; et al. Preoperative Radiotherapy in Patients With Primary Retroperitoneal Sarcoma: EORTC-62092 Trial (STRASS) Versus Off-trial (STREXIT) Results. Ann. Surg. 2023, 278, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Roeder, F. Radiation Therapy in Adult Soft Tissue Sarcoma-Current Knowledge and Future Directions: A Review and Expert Opinion. Cancers 2020, 12, 3242. [Google Scholar] [CrossRef]
- Ruano-Ravina, A.; Ortega, R.A.; Guedea, F. Intraoperative radiotherapy in pancreatic cancer: A systematic review. Radiother. Oncol. 2008, 87, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R.; Roeder, F. Intraoperative radiation therapy (IORT) in pancreatic cancer. Radiat. Oncol. 2017, 12, 8. [Google Scholar] [CrossRef]
- Ogawa, K.; Karasawa, K.; Ito, Y.; Ogawa, Y.; Jingu, K.; Onishi, H.; Aoki, S.; Wada, H.; Kokubo, M.; Etoh, H.; et al. Intraoperative radiotherapy for resected pancreatic cancer: A multi-institutional retrospective analysis of 210 patients. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Uchino, R.; Kanemitsu, K.; Toyanoga, M.; Saitoh, N.; Nakamura, I.; Tashiro, S.; Miyauchi, Y. Combination of intraoperative radiation with resection of cancer of the pancreas. Int. J. Pancreatol. 1990, 7, 201–207. [Google Scholar] [CrossRef]
- Calvo, F.A.; Sole, C.V.; Atahualpa, F.; Lozano, M.A.; Gomez-Espi, M.; Calin, A.; Garcia-Alfonso, P.; Gonzalez-Bayon, L.; Herranz, R.; Garcia Sobrido, J.L. Chemoradiation for resected pancreatic adenocarcinoma with or without intraoperative radiation therapy boost: Long-term outcomes. Pancreatology 2013, 13, 576–582. [Google Scholar] [CrossRef]
- Jin, L.; Shi, N.; Ruan, S.; Hou, B.; Zou, Y.; Zou, X.; Jin, H.; Jian, Z. The role of intraoperative radiation therapy in resectable pancreatic cancer: A systematic review and meta-analysis. Radiat. Oncol. 2020, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.A.; Asencio, J.M.; Roeder, F.; Krempien, R.; Poortmans, P.; Hensley, F.W.; Krengli, M. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer. Clin. Trans. Radiat. Oncol. 2020, 23, 91–99. [Google Scholar] [CrossRef]
- Calvo, F.A.; Krengli, M.; Asencio, J.M.; Serrano, J.; Poortmans, P.; Roeder, F.; Krempien, R.; Hensley, F.W. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in unresected pancreatic cancer. Radiother. Oncol. 2020, 148, 57–64. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.S.; Cho, Y.; Lee, I.J.; Kin, H.J.; Lee, D.E.; Kang, H.W.; Park, J.S. Intraoperative radiation therapy induces immune response activity after pancreatic surgery. BMC Cancer 2021, 21, 1097. [Google Scholar] [CrossRef]
- Yanagi, T.; Takama, N.; Kato, E.; Baba, F.; Kitase, M.; Shimohira, M.; Sawai, H.; Kato, T.; Matsuo, K.; Shibamoto, Y. Clinical Outcomes of Intraoperative Radiotherapy, Postoperative Radiotherapy, and Definitive Radiotherapy for Non-metastatic Pancreatic Cancer. Kurume Med. J. 2023, 67, 163–170. [Google Scholar] [CrossRef]
- Fietkau, R.; Grutzmann, R.; Wittel, U.A.; Croner, R.S.; Jacobash, L.; Neumann, U.P.; Reinacher-Shick, A.; Inhoff, D.; Boeck, S.; Keilholz, L.; et al. R0 resection following chemo (radio)therapy improves survival of primary inoperable pancreatic cancer patients. Interim results of the German randomized CONKO-007 ± trial. Strahlenther. Onkol. 2021, 197, 8–18. [Google Scholar]
- Wootton, L.S.; Meyer, J.; Kim, E.; Phillips, M. Commissioning, clinical implementation, and performance of the Mobetron 2000 for intraoperative radiation therapy. J. Appl. Clin. Med. Phys. 2017, 18, 230–242. [Google Scholar] [CrossRef]
- Ryczkowski, A.; Pawalowski, B.; Krusyna-Mochalska, M.M.; Misiarz, A.; Jodda, A.; Adrich, P.; Piotrowski, T. Implementation and validation of the method for the energy spectra reconstruction of electron beams generated by the AQURE mobile accelerator. Rep. Pract. Oncol. Radiother. 2025, 30, 62–70. [Google Scholar] [CrossRef]
- Lenartowicz-Gasik, A.; Misiarz, A. Experimental verification of the applicability of the AQURE IOERT accelerator for FLASH radiotherapy. Pol. J. Med. Phys. Eng. 2025, 31, 62–72. [Google Scholar]
- Malicki, J.; Bly, R.; Bulot, M.; Godet, J.L.; Jahnen, A.; Krengli, M.; Maingon, P.; Martin, C.P.; Skrobala, A.; Valero, M.; et al. Patient safety in external beam radiotherapy, results of the ACCIRAD project: Recommendations for radiotherapy institutions and national authorities on assessing risks and analysing adverse error-events and near misses. Radiother. Oncol. 2018, 127, 164–170. [Google Scholar] [CrossRef]
- Krengli, M.; Terrona, C.; Ballarè, A.; Loi, G.; Tarabuzzi, R.; Marchioro, G.; Beldi, D.; Mones, E.; Bolchini, C.; Volpe, A.; et al. Intraoperative radiotherapy during radical prostatectomy for locally advanced prostate cancer: Technical and dosimetric aspects. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1073–1077. [Google Scholar] [CrossRef]
- Amsbaugh, M.J.; Mahajan, A.; Thall, P.F.; McAleer, M.F.; Paulino, A.C.; Grosshans, D.; Khatua, S.; Ketonen, L.; Fontanilla, H.; McGovern, S.L. A Phase 1/2 Trial of Reirradiation for Diffuse Intrinsic Pontine Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 144–148. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, V.; Calvo, F.A.; Ledesma-Carbayo, M.J.; Sole, C.V.; Calvo-Haro, J.; Desco, M.; Pascau, J.; Zhang, R. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations. PLoS ONE 2020, 15, e0227155. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, C.; Mazzarotto, R. Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers 2022, 14, 3532. [Google Scholar] [CrossRef]
- Pouyanrad, Z.; Zafarghandi, M.S.; Setayeshi, S. A Novel Treatment Planning Design for Intraoperative Electron Radiation Therapy (IOERT) using an Electronic Board. J. Biomed. Phys. Eng. 2024, 14, 119–128. [Google Scholar]
- Franciosini, G.; Carlotti, D.; Cattani, F.; De Gregorio, A.; De Liso, V.; De Rosa, F.; Di Francesco, M.; Di Martino, F.; Felici, G.; Pensavalle, J.H.; et al. IOeRT conventional and FLASH treatment planning system implementation exploiting fast GPU Monte Carlo: The case of breast cancer. Phys. Med. 2024, 121, 103346. [Google Scholar] [CrossRef]
- Roeder, F.; Fastner, G.; Fussl, C.; Sedlmayer, F.; Stana, M.; Berchtold, J.; Jäger, T.; Presl, J.; Emmanuel, K.; Colleselli, D.; et al. First clinical application of image-guided intraoperative electron radiation therapy with real time intraoperative dose calculation in recurrent rectal cancer: Technical procedure. Radiat. Oncol. 2023, 18, 186. [Google Scholar] [CrossRef]
- García-Vázquez, V.; Marinetto, E.; Guerra, P.; Valdivieso-Casique, M.F.; Calvo, F.Á.; Alvarado-Vásquez, E.; Sole, C.V.; Vosburgh, K.G.; Desco, M.; Pascau, J. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation. Z. Med. Phys. 2017, 27, 218–231. [Google Scholar] [CrossRef]
- Skrobala, A.; Malicki, J. Beam orientation in stereotactic radiosurgery using an artificial neural network. Radiother. Oncol. 2014, 111, 296–300. [Google Scholar] [CrossRef]
- Erdur, A.C.; Rusche, D.; Scholz, D.; Kiechle, J.; Fischer, S.; Llorian-Salvador, O.; Buchner, J.A.; Nguyen, M.Q.; Etzel, L.; Weidner, J.; et al. Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives. Strahlenther. Onkol. 2025, 201, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Yu, S.; Lai, Z.; Xuan, Z.; Zhang, J.; Wang, B.; Ge, Y. A Review of Artificial Intelligence Application for Radiotherapy. Dose-Response 2024, 22, 15593258241263687. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, T.; Ryczkowski, A.; Kalendralis, P.; Adamczewski, M.; Sadowski, P.; Bajon, B.; Kruszyna-Mochalska, M.; Jodda, A. Forecasting model for qualitative prediction of the results of patient-specific quality assurance based on planning and complexity metrics and their interrelations. Pilot study. Rep. Pract. Oncol. Radiother. 2024, 29, 318–328. [Google Scholar] [CrossRef]
- Hurkmans, C.; Bibault, J.E.; Clementel, E.; Dhont, J.; van Elmpt, W.; Kantidakis, G.; Andratschke, N. Assessment of bias in scoring of AI-based radiotherapy segmentation and planning studies using modified TRIPOD and PROBAST guidelines as an example. Radiother. Oncol. 2024, 194, 110196. [Google Scholar] [CrossRef]
- Bibault, J.E.; Giraud, P. Deep learning for automated segmentation in radiotherapy: A narrative review. Br. J. Radiol. 2024, 97, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Traverso, A.; Niraula, D.; Zou, J.; Owen, D.; El Naqa, I.; Wei, L. Interpretable artificial intelligence in radiology and radiation oncology. Br. J. Radiol. 2023, 96, 20230142. [Google Scholar] [CrossRef]
- Kawamura, M.; Kamomae, T.; Yanagawa, M.; Kamagata, K.; Fujita, S.; Ueda, D.; Matsui, Y.; Fushimi, Y.; Fujioka, T.; Nozaki, T.; et al. Revolutionizing radiation therapy: The role of AI in clinical practice. J. Radiat. Res. 2024, 65, 1–9. [Google Scholar] [CrossRef]
- Henderson, E.G.A.; Vasquez Osorio, E.M.; Van Herk, M.; Green, A.F. Optimising a 3D convolutional neural network for head and neck computed tomography segmentation with limited training data. Phys. Imaging Radiat. Oncol. 2022, 22, 44–50. [Google Scholar] [CrossRef]
- Kubo, K.; Monzen, H.; Ishii, K.; Tamura, M.; Kamaworita, R.; Sumida, I.; Mizuno, H.; Nishimura, Y. Dosimetric comparison of RapidPlan and manually optimized plans in volumetric modulated arc therapy for prostate cancer. Phys. Med. 2017, 44, 199–204. [Google Scholar] [CrossRef]
- Duke, K.; Papanikolaou, N. Artificial intelligence in radiation therapy: From imaging to delivery—A comprehensive review. Br. J. Radiol. 2025, 2, ubaf012. [Google Scholar] [CrossRef]
- Kajikawa, T.; Kadoya, N.; Ito, K.; Takayama, Y.; Chiba, T.; Tomori, S.; Nemoto, H.; Dobashi, S.; Takeda, K.; Jingu, K. A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J. Radiat. Res. 2019, 60, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Heilemann, G.; Buschmann, M.; Lechner, W.; Dick, V.; Eckert, F.; Heilmann, M.; Herrmann, H.; Moll, M.; Knoth, J.; Konrad, S.; et al. Clinical Implementation and Evaluation of Auto-Segmentation Tools for Multi-Site Contouring in Radiotherapy. Phys. Imaging Radiat. Oncol. 2023, 28, 100515. [Google Scholar] [CrossRef] [PubMed]
- Lastrucci, A.; Wandael, Y.; Ricci, R.; Maccioni, G.; Giansanti, D. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics 2024, 14, 939. [Google Scholar] [CrossRef]
- Guerra, P.; Udías, J.M.; Herranz, E.; Santos-Miranda, J.A.; Herraiz, J.L.; Valdivieso, M.F.; Rodríguez, R.; Calama, J.A.; Pascau, J.; Calvo, F.A.; et al. Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy. Phys. Med. Biol. 2014, 59, 7159–7179. [Google Scholar] [CrossRef]
- Fountzilas, E.; Pearce, T.; Baysal, M.A.; Chakraborty, A.; Tsimberidou, A.M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit. Med. 2025, 8, 75. [Google Scholar] [CrossRef] [PubMed]
IORT by Low-Energy X-Rays (Spherical Applicator) | IORT by Electrons (6–12 MeV) | |
---|---|---|
Dose at surface (% of maximum dose) | Higher (100%) | Lower (86–94%) |
Dose at 2 cm depth | Lower (<20%) | Higher (70–100%) |
Dose homogeneity (surface to depth) | >150% variation | <15% variation |
Depth of useful dose | 0 cm–1 cm | Up to 4–5 cm |
Treatment time (or Beam-on time) | 30–45 min | 2–4 min |
Procedure time | 45–120 min | 30–45 min |
Treatment sites | Small target volume within 1 cm from the applicator surface | Larger target volume accessible with applicators of about 10 cm in max diameter |
Tumor Site | Author/Year | Series | Study Design | Modality | IORT Dose (Gy) | Sample Size | Key Outcomes |
---|---|---|---|---|---|---|---|
Breast | Fastner et al., 2013 [15] | ISIORT, Multi-institutional | Observational (pooled analysis) | IOERT boost | 10 | 1109 | LC 99.2% after median F/U of 72.4 months |
Breast | Orecchia et al., 2021 [16] | ELIOT, Mono-Institutional | Phase III | IOERT vs. WBRT | 21 | 1305 | 15-yr LR: WBRT 2.4% vs. 10.2% IORT %. p = <0.001; in lower-risk pts no significant difference for LR |
Breast | Vaidya et al., 2023 [17] | TARGIT-A, Multi-institutional | Phase III | Intrabeam IORT vs. WBRT | 20 | 2298 | No statistically significant difference for LC |
Rectum | Calvo et al., 2002 [18] | Mono-institutional, LARC | Observational | CRT + surgery + IORT | 12 | 100 | 1 in-field IORT failure; 14 distant failures |
Rectum | Kusters et al., 2010 [19] | Multi-institutional, LARC | Observational (pooled analysis) | CRT + IORT + CT | 12.5 | 605 | LR rate 12.5% |
Rectum | Masaki et al. 2010 [20] | Mono-institutional | Phase III | Preserved bilateral pelvic plexus + IORT vs. partial bilateral pelvic plexus preservation without IORT | 18–20 | 76 | Higher number of distant metastases in IORT patients (p = 0.04) |
Rectum | Dubois et al., 2011 [21] | Multi-institutional, LARC | Phase III | Pre-RT + surgery ± IORT | 18 | 142 | No benefit for IORT in local control or survival |
Sarcoma | Sindelar et al., 1993 [22] | NIH, Mono-institutional, RPS | Phase III | IORT + Low dose EBRT versus High dose EBRT | 20 | 35 | IORT patients experienced lower toxicity; LC 6/15 IORT; 16/20 EBRT |
Sarcoma | Calvo et al., 2014 [23] | Multi-institutional, Extremities, limb sparing | Observational (pooled analysis) | IORT + EBRT | 10–20 | 159 | 5-year IOERT in-field control 86%, DFS 61%, OS 72% |
Sarcoma | Roeder et al., 2018 [24] | Multi-institutional, RPS | Observational | IORT+/− EBRT | 15 | 156 | 5-year OS 63% in the primary situation and 68% after R0 resection |
Sarcoma | Seidensaal et al., 2023 [25] | Mono-institutional, RPS | Phase I/II | IMRT + IORT boost | 12–20 | 37 | Primary endpoint (5-year LC = 70%) was not met |
Pancreas | Tepper et al., 1991 [26] | RTOG, Multi-institutional series | Observational | IORT + EBRT + chemo | 20 | 51 | Median OS 9 months; LC not assessed |
Pancreas | Valentini et al. 2009 [27] | ISIORT, Multi-institutional | Observational (pooled analysis) | Surgery + IORT +/− EBRT | 15 | 270 | 5-yr LC 23.3% |
Pancreas | Ren et al., 2021 [28] | Multi-institutional, LAPC | Retrospective, CCRT vs. IORT | 15–20 Gy | 15–20 | 103 | G3-G4 toxicity higher in CCRT pts (34% vs. 0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krengli, M.; Kruszyna-Mochalska, M.M.; Pasqualetti, F.; Malicki, J. Can Advances in Artificial Intelligence Strengthen the Role of Intraoperative Radiotherapy in the Treatment of Cancer? Cancers 2025, 17, 3124. https://doi.org/10.3390/cancers17193124
Krengli M, Kruszyna-Mochalska MM, Pasqualetti F, Malicki J. Can Advances in Artificial Intelligence Strengthen the Role of Intraoperative Radiotherapy in the Treatment of Cancer? Cancers. 2025; 17(19):3124. https://doi.org/10.3390/cancers17193124
Chicago/Turabian StyleKrengli, Marco, Marta Małgorzata Kruszyna-Mochalska, Francesco Pasqualetti, and Julian Malicki. 2025. "Can Advances in Artificial Intelligence Strengthen the Role of Intraoperative Radiotherapy in the Treatment of Cancer?" Cancers 17, no. 19: 3124. https://doi.org/10.3390/cancers17193124
APA StyleKrengli, M., Kruszyna-Mochalska, M. M., Pasqualetti, F., & Malicki, J. (2025). Can Advances in Artificial Intelligence Strengthen the Role of Intraoperative Radiotherapy in the Treatment of Cancer? Cancers, 17(19), 3124. https://doi.org/10.3390/cancers17193124