MR-Guided Radiation Therapy for Prostate and Pancreas Cancer Treatment: A Dosimetric Study Across Two Major MR-Linac Platforms
Simple Summary
Abstract
1. Introduction
ViewRay MRIdian | Elekta Unity | |
---|---|---|
Imaging Magnet | 0.35T | 1.5T |
Beam Quality | 6MV FFF | 7MV FFF |
Nominal Dose Rate at Dmax | 600 MU/Min | 535 MU/Min |
Source-Axis Distance (SAD) | 90 cm | 143.5 cm |
Magnet configuration | Split bore magnet, radiation therapy beam passes between magnets | Single bore magnet placed co-axially inside the gantry using single cryostat with low attenuating region between superconducting coils to maximize magnetic field homogeneity |
Field Shaping | Double focus, double stack primary MLC with 4 mm effective leaf width | Single focus MLC, 7 mm leaf with orthogonal dynamic jaws to produce virtual leaf width of 1 mm |
Planning and Optimization | Dose-Volume-Based Optimization | Multi-Criteria Optimization Including Biological Modeling of Tissues [21] |
Dose Calculation Algorithm | Voxel-Based Monte Carlo (VMC) [22] | GPU Monte Carlo Dose Calculation (GPUMCD) [23] |
Field size | 27.4 cm × 24.1 cm | 57.4 cm × 22 cm |
2. Materials and Method
2.1. Clinical MRIdian Treatment
2.2. Unity Treatment Plans
2.3. Unity Deliverability, Monitor Unit, and Delivery Time
2.4. Statistical Analysis
3. Results
3.1. Treatment Plan Quality Comparison
3.2. Unity Deliverability, MU, and Delivery Time
4. Discussion
4.1. Prostate
4.2. Pancreas
4.3. Beam Shaping and Plan Quality
4.4. Treatment MU and Delivery Time
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almansour, H.; Afat, S.; Fritz, V.; Schick, F.; Nachbar, M.; Thorwarth, D.; Zips, D.; Müller, A.-C.; Nikolaou, K.; Othman, A.E.; et al. Prospective Image Quality and Lesion Assessment in the Setting of MR-Guided Radiation Therapy of Prostate Cancer on an MR-Linac at 1.5 T: A Comparison to a Standard 3 T MRI. Cancers 2021, 13, 1533. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Tree, A.C. Prostate cancer—Advantages and disadvantages of MR-guided RT. Clin. Transl. Radiat. Oncol. 2019, 18, 68–73. [Google Scholar] [CrossRef]
- Sritharan, K.; Tree, A. MR-guided radiotherapy for prostate cancer: State of the art and future perspectives. Br. J. Radiol. 2022, 95, 20210800. [Google Scholar] [CrossRef]
- Stanescu, T.; Shessel, A.; Carpino-Rocca, C.; Taylor, E.; Semeniuk, O.; Li, W.; Barry, A.; Lukovic, J.; Dawson, L.; Hosni, A. MRI-Guided Online Adaptive Stereotactic Body Radiation Therapy of Liver and Pancreas Tumors on an MR-Linac System. Cancers 2022, 14, 716. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Larson, P.E.Z.; Bok, R.A.; von Morze, C.; Sriram, R.; Delos Santos, R.; Delos Santos, J.; Gordon, J.W.; Bahrami, N.; Ferrone, M.; et al. Assessing Prostate Cancer Aggressiveness with Hyperpolarized Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion. Cancer Res. 2017, 77, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Li, X.; Chen, Y.; Li, X.; Chang, M.-C.; Oborski, M.J.; Malyarenko, D.I.; Muzi, M.; Jajamovich, G.H.; Fedorov, A.; et al. Variations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Evaluation of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge. Transl. Oncol. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- van der Heide, U.A.; Thorwarth, D. Quantitative Imaging for Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 683–686. [Google Scholar] [CrossRef]
- Halle, C.; Andersen, E.; Lando, M.; Aarnes, E.-K.; Hasvold, G.; Holden, M.; Syljuåsen, R.G.; Sundfør, K.; Kristensen, G.B.; Holm, R.; et al. Hypoxia-Induced Gene Expression in Chemoradioresistant Cervical Cancer Revealed by Dynamic Contrast-Enhanced MRI. Cancer Res. 2012, 72, 5285–5295. [Google Scholar] [CrossRef]
- Padhani, A.R.; Liu, G.; Mu-Koh, D.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations. Neoplasia 2009, 11, 102–125. [Google Scholar] [CrossRef]
- Afaq, A. Diffusion-weighted magnetic resonance imaging for tumour response assessment: Why, when and how? Cancer Imaging 2010, 10, S179–S188. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jamin, Y.; Boult, J.K.R.; Cummings, C.; Waterton, J.C.; Ulloa, J.; Sinkus, R.; Bamber, J.C.; Robinson, S.P. Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography. Br. J. Cancer 2014, 110, 1727–1732. [Google Scholar] [CrossRef]
- Kurhanewicz, J.; Vigneron, D.B.; Brindle, K.; Chekmenev, E.Y.; Comment, A.; Cunningham, C.H.; DeBerardinis, R.J.; Green, G.G.; Leach, M.O.; Rajan, S.S.; et al. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research. Neoplasia 2011, 13, 81–97. [Google Scholar] [CrossRef]
- Izquierdo-Garcia, J.L.; Viswanath, P.; Eriksson, P.; Cai, L.; Radoul, M.; Chaumeil, M.M.; Blough, M.; Luchman, H.A.; Weiss, S.; Cairncross, J.G.; et al. IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism. Cancer Res. 2015, 75, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- McGee, K.P.; Hwang, K.; Sullivan, D.C.; Kurhanewicz, J.; Hu, Y.; Wang, J.; Li, W.; Debbins, J.; Paulson, E.; Olsen, J.R.; et al. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med. Phys. 2021, 48, e697–e732. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. Magnetic Resonance Imaging–Guided vs Computed Tomography–Guided Stereotactic Body Radiotherapy for Prostate Cancer. JAMA Oncol. 2023, 9, 365. [Google Scholar] [CrossRef]
- Onal, C.; Efe, E.; Bozca, R.; Yavas, C.; Yavas, G.; Arslan, G. The impact of margin reduction on radiation dose distribution of ultra-hypofractionated prostate radiotherapy utilizing a 1.5-T MR-Linac. J. Appl. Clin. Med. Phys. 2024, 25, e14179. [Google Scholar] [CrossRef]
- de Pooter, J.; Billas, I.; de Prez, L.; Duane, S.; Kapsch, R.-P.; Karger, C.P.; van Asselen, B.; Wolthaus, J. Reference dosimetry in MRI-linacs: Evaluation of available protocols and data to establish a Code of Practice. Phys. Med. Biol. 2021, 66, 05TR02. [Google Scholar] [CrossRef]
- Raaijmakers, A.J.E.; Raaymakers, B.W.; Lagendijk, J.J.W. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: Dependence on the magnetic field strength. Phys. Med. Biol. 2008, 53, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Lamb, J.M.; Wilhalme, H.; Casado, M.; Chong, N.; Zello, L.; Juarez, J.E.; Jiang, T.; Neilsen, B.K.; Low, D.A.; et al. Magnetic Resonance Imaging Versus Computed Tomography Guidance for Stereotactic Body Radiotherapy in Prostate Cancer: 2-year Outcomes from the MIRAGE Randomized Clinical Trial. Eur. Urol. 2024, 87, 622–625. [Google Scholar] [CrossRef]
- Parikh, P.J.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Portelance, L.; et al. A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided On-Table Adaptive Radiation Therapy for Borderline Resectable and Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 799–808. [Google Scholar] [CrossRef]
- Clements, M.; Schupp, N.; Tattersall, M.; Brown, A.; Larson, R. Monaco treatment planning system tools and optimization processes. Med. Dosim. 2018, 43, 106–117. [Google Scholar] [CrossRef]
- Kawrakow, I.; Fippel, M.; Friedrich, K. 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med. Phys. 1996, 23, 445–457. [Google Scholar] [CrossRef]
- Hissoiny, S.; Ozell, B.; Bouchard, H.; Després, P. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform. Med. Phys. 2011, 38, 754–764. [Google Scholar] [CrossRef]
- Jelen, U.; Pagulayan, C.; Moutrie, Z.; Arts, J.; George, A.; Jameson, M.G. Technical note: Cryostat transmission characterization for MR linac—Temporal stability, clinical impact and change implementation. Med. Phys. 2024, 51, 5142–5147. [Google Scholar] [CrossRef]
- Ma, C.-M.; Li, J. Dose specification for radiation therapy: Dose to water or dose to medium? Phys. Med. Biol. 2011, 56, 3073–3089. [Google Scholar] [CrossRef]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef]
- Meijer, H.J.M.; Debats, O.A.; Kunze-Busch, M.; van Kollenburg, P.; Leer, J.W.; Witjes, J.A.; Kaanders, J.H.A.M.; Barentsz, J.O.; van Lin, E.N.J.T. Magnetic Resonance Lymphography–Guided Selective High-Dose Lymph Node Irradiation in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 175–183. [Google Scholar] [CrossRef] [PubMed]
- De Meerleer, G.O.; Villeirs, G.M.; Vakaet, L.; Delrue, L.J.; De Neve, W.J. The Incidence of Inclusion of the Sigmoid Colon and Small Bowel in the Planning Target Volume in Radiotherapy for Prostate Cancer. Strahlenther. Onkol. 2004, 180, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.C.; Yoon, S.M.; Cao, M.; Raldow, A.C.; Xiang, M. Identifying predictors of on-table adaptation for pancreas stereotactic body radiotherapy (SBRT). Clin. Transl. Radiat. Oncol. 2023, 40, 100603. [Google Scholar] [CrossRef] [PubMed]
- Uijtewaal, P.; Borman, P.T.S.; Woodhead, P.L.; Kontaxis, C.; Hackett, S.L.; Verhoeff, J.; Raaymakers, B.W.; Fast, M.F. First experimental demonstration of VMAT combined with MLC tracking for single and multi fraction lung SBRT on an MR-linac. Radiother. Oncol. 2022, 174, 149–157. [Google Scholar] [CrossRef]
- Rusu, S.D.; Smith, B.R.; St-Aubin, J.J.; Shaffer, N.; Hyer, D.E. Surrogate gating strategies for the Elekta Unity MR-Linac gating system. J. Appl. Clin. Med. Phys. 2024, 26, e14566. [Google Scholar] [CrossRef] [PubMed]
- Fast, M.F.; Cao, M.; Parikh, P.; Sonke, J.-J. Intrafraction Motion Management With MR-Guided Radiation Therapy. Semin. Radiat. Oncol. 2024, 34, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Grimbergen, G.; Hackett, S.L.; van Ommen, F.; van Lier, A.L.H.M.W.; Borman, P.T.S.; Meijers, L.T.C.; de Groot-van Breugel, E.N.; de Boer, J.C.J.; Raaymakers, B.W.; Intven, M.P.W.; et al. Gating and intrafraction drift correction on a 1.5 T MR-Linac: Clinical dosimetric benefits for upper abdominal tumors. Radiother. Oncol. 2023, 189, 109932. [Google Scholar] [CrossRef] [PubMed]
ViewRay MRIdian | Elekta Unity | |
---|---|---|
Treatment Technique | Step-and-Shoot IMRT | Step-and-Shoot IMRT |
No. of Beams | Per Plan (15–21 beams) | Same as the MRIdian Plans |
Beam Angles | Per Plan | Same as the MRIdian Plans |
Maximum No. of Segments | Per Plan | Same as the MRIdian Plans |
Dose Calculation Grid Size | Prostate: 2 mm; Pancreas: 3 mm | Prostate: 2 mm; Pancreas: 3 mm |
Dose to Medium | Yes | Yes |
Electron Density | Derived from Deformed CT | Bulk Assignment |
Prostate SBRT (MIRAGE Trial, 8 Gy × 5 to the PTV and 8.4 Gy × 5 to the GTV, n = 10) | |||||
---|---|---|---|---|---|
Trial Goal | MRIdian | Unity | (MRIdian−Unity) | p-Value | |
PTV V40Gy (%) | ≥95 | 91.93 ± 3.28 | 91.93 ± 3.28 | 0 | NA |
PTV V42Gy (%) | ≤30 | 21.69 ± 6.77 | 19.67 ± 6.05 | 2.02 | 0.4270 |
GTV V42Gy (%) | ≥95 | 93.08 ± 11.96 | 94.87 ± 10.15 | −1.80 | 0.2240 |
Rectum V20Gy (%) | ≤50 | 15.24 ± 9.26 | 14.47 ± 9.59 | 0.76 | 0.4459 |
Rectum V24Gy (%) | ≤50 | 10.19 ± 7.79 | 10.55 ± 7.76 | −0.35 | 0.5732 |
Rectum V32Gy (%) | ≤20 | 4.86 ± 4.41 | 4.53 ± 4.25 | 0.32 | 0.1978 |
Rectum V36Gy (%) | ≤10 | 2.71 ± 2.69 | 2.20 ± 2.45 | 0.52 | 0.0095 * |
Rectum V38Gy (cc) | ≤2 | 0.92 ± 0.82 | 0.62 ± 0.64 | 0.31 | 0.0043 * |
Rectum V40Gy (%) | ≤5 | 0.60 ± 0.80 | 0.33 ± 0.48 | 0.26 | 0.0469 * |
Rectum V42Gy (cc) | ≤0.035 | 0.005 ± 0.01 | 0.003 ± 0.006 | 0.002 | 1.0000 |
Bladder V20Gy (%) | ≤40 | 13.02 ± 10.13 | 14.06 ± 11.83 | −1.05 | 0.7695 |
Bladder V39Gy (cc) | ≤4 | 1.00 ± 1.26 | 1.27 ± 1.77 | −0.27 | 0.8203 |
Bladder V40Gy (%) | ≤5 | 0.13 ± 0.16 | 0.08 ± 0.13 | 0.05 | 0.1924 |
Bladder V42Gy (cc) | ≤0.035 | 0.005 ± 0.01 | 0.0001 ± 0.0003 | 0.005 | 0.8203 |
Anal Canal V20Gy (cc) | ≤5 | 0.30 ± 0.52 | 0.23 ± 0.24 | 0.07 | 0.7695 |
Anal Canal V30Gy (cc) | ≤0.035 | 0.005 ± 0.008 | 0.004 ± 0.006 | 0.001 | 0.6513 |
Urethra V42Gy (cc) | ≤0.035 | 0.006 ± 0.01 | 0.005 ± 0.008 | 0.0004 | 0.9179 |
Femur Right V20Gy (cc) | ≤5 | 1.51 ± 1.37 | 0.32 ± 0.78 | 1.18 | 0.0020 * |
Femur Left V20Gy (cc) | ≤5 | 1.16 ± 1.02 | 0.19 ± 0.29 | 0.96 | 0.0137 * |
Penile Bulb V24.8Gy (%) | ≤5 | 0.15 ± 0.49 | 0.06 ± 0.19 | −1.02 | 0.3434 |
Sigmoid V25Gy (cc) | ≤30 | 0.03 ± 0.09 | 0.14 ± 0.41 | −0.10 | NA |
Sigmoid V30Gy (cc) | ≤1 | 0 | 0.05 ± 0.15 | −0.05 | NA |
Sigmoid V38Gy (cc) | ≤0.035 | 0 | 0 | 0 | NA |
Pancreas SBRT (SMART Trial, 10 Gy × 5 to the PTV, n = 10) | |||||
---|---|---|---|---|---|
Trial Goal | MRIdian | Unity | (MRIdian−Unity) | p-Value | |
PTV V50Gy (%) | ≥95 | 80.28 ± 10.28 | 80.28 ± 10.28 | 0 | NA |
Stomach V33Gy (cc) | ≤0.50 | 0.33 ± 0.14 | 0.29 ± 0.23 | 0.05 | 0.6128 |
Duodenum V33Gy (cc) | ≤0.50 | 0.28 ± 0.18 | 0.30 ± 0.23 | −0.02 | 0.8476 |
Small Bowel V33Gy (cc) | ≤0.50 | 0.23 ± 0.22 | 0.21 ± 0.24 | 0.02 | 0.9375 |
Large Bowel V33Gy (cc) | ≤0.50 | 0.008 ± 0.02 | 0 | 0.008 | NA |
Liver <15 Gy (cc) | ≥700 | 1103.79 ± 276.93 | 1118.90 ± 291.08 | −15.11 | 0.0718 |
Liver Mean Dose (Gy) | ≤20 | 7.79 ± 3.67 | 6.38 ± 3.99 | 1.40 | 0.0371 * |
Spinal Cord V25Gy (cc) | ≤0.50 | 0 | 0.0006 ± 0.0019 | −0.0006 | NA |
Kidney Right V14Gy (%) | ≤33% | 9.243 ± 12.35 | 11.07 ± 12.88 | −1.823 | 0.73289 |
Kidney Left V14Gy (%) | ≤33% | 7 ± 7.59 | 6.83 ± 8.17 | 0.1167 | 0.41937 |
Great Vessel V53Gy (cc) | ≤0.035 | 0.1875 ± 0.36 | 0.1305 ± 0.25 | 0.057 | NA |
Esophagus V35Gy (cc) | ≤0.035 | 0 | 0.003 ± 0.006 | −0.003 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Pham, J.; Lauria, M.V.; Atienza, C.; Sloman, B.; Barry, P.; Davis, J.; Saracen, M.; Kishan, A.; Raldow, A.; et al. MR-Guided Radiation Therapy for Prostate and Pancreas Cancer Treatment: A Dosimetric Study Across Two Major MR-Linac Platforms. Cancers 2025, 17, 2708. https://doi.org/10.3390/cancers17162708
Dong H, Pham J, Lauria MV, Atienza C, Sloman B, Barry P, Davis J, Saracen M, Kishan A, Raldow A, et al. MR-Guided Radiation Therapy for Prostate and Pancreas Cancer Treatment: A Dosimetric Study Across Two Major MR-Linac Platforms. Cancers. 2025; 17(16):2708. https://doi.org/10.3390/cancers17162708
Chicago/Turabian StyleDong, Huiming, Jonathan Pham, Michael V. Lauria, Caiden Atienza, Brett Sloman, Paul Barry, Jennifer Davis, Michael Saracen, Amar Kishan, Ann Raldow, and et al. 2025. "MR-Guided Radiation Therapy for Prostate and Pancreas Cancer Treatment: A Dosimetric Study Across Two Major MR-Linac Platforms" Cancers 17, no. 16: 2708. https://doi.org/10.3390/cancers17162708
APA StyleDong, H., Pham, J., Lauria, M. V., Atienza, C., Sloman, B., Barry, P., Davis, J., Saracen, M., Kishan, A., Raldow, A., Qi, X. S., Hyer, D., & Lamb, J. (2025). MR-Guided Radiation Therapy for Prostate and Pancreas Cancer Treatment: A Dosimetric Study Across Two Major MR-Linac Platforms. Cancers, 17(16), 2708. https://doi.org/10.3390/cancers17162708