DNA Damage Repair Pathway Alterations and Immune Landscape Differences in Pediatric/Adolescent, Young Adult (AYA) and Adult Sarcomas
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. DNA Next-Generation Sequencing (NGS)
2.3. Gene Fusion Detection by Whole Transcriptome Sequencing
2.4. Genomic Scar Score (GSS) Calculation and Homologous Recombination Deficiency (HRD)
2.5. Real-World Cohort Survival Analysis
2.6. Statistical Analysis
3. Results
3.1. Study Cohort Description
3.2. Landscape of DDR Pathway Alterations by Sarcoma Subtype
3.3. HRD Frequency and Association with DDR Alterations in Sarcomas
3.4. DDR Alterations and HRD in Pediatric/AYA Sarcomas
3.5. Tumor Microenvironments and Immunotherapy-Related Biomarkers Associated with DDR Pathway Alterations
3.6. Clinical Outcomes Associated with DDR Pathway Alterations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benna, C.; Simioni, A.; Pasquali, S.; De Boni, D.; Rajendran, S.; Spiro, G.; Colombo, C.; Virgone, C.; DuBois, S.G.; Gronchi, A.; et al. Genetic susceptibility to bone and soft tissue sarcomas: A field synopsis and meta-analysis. Oncotarget 2018, 9, 18607–18626. [Google Scholar] [CrossRef]
- Coindre, J.-M.; Terrier, P.; Guillou, L.; Le Doussal, V.; Collin, F.; Ranchère, D.; Sastre, X.; Vilain, M.-O.; Bonichon, F.; N’Guyen Bui, B. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas. Cancer 2001, 91, 1914–1926. [Google Scholar] [CrossRef]
- Spalato-Ceruso, M.; Ghazzi, N.E.; Italiano, A. New strategies in soft tissue sarcoma treatment. J. Hematol. Oncol. 2024, 17, 76. [Google Scholar] [CrossRef]
- Huang, R.-X.; Zhou, P.-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [CrossRef]
- Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; He, Y.; Zhou, C. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta. Pharm. Sin. B 2021, 11, 2983–2994. [Google Scholar] [CrossRef]
- Ballinger, M.L.; Goode, D.L.; Ray-Coquard, I.; James, P.A.; Mitchell, G.; Niedermayr, E.; Puri, A.; Schiffman, J.D.; Dite, G.S.; Cipponi, A.; et al. Monogenic and polygenic determinants of sarcoma risk: An international genetic study. Lancet Oncol. 2016, 17, 1261–1271. [Google Scholar] [CrossRef]
- Nacev, B.A.; Sanchez-Vega, F.; Smith, S.A.; Antonescu, C.R.; Rosenbaum, E.; Shi, H.; Tang, C.; Socci, N.D.; Rana, S.; Gularte-Mérida, R.; et al. Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets. Nat. Commun. 2022, 13, 3405. [Google Scholar] [CrossRef]
- Espejo-Freire, A.P.; Elliott, A.; Rosenberg, A.; Costa, P.A.; Barreto-Coelho, P.; Jonczak, E.; D’Amato, G.; Subhawong, T.; Arshad, J.; Diaz-Perez, J.A.; et al. Genomic Landscape of Angiosarcoma: A Targeted and Immunotherapy Biomarker Analysis. Cancers 2021, 13, 4816. [Google Scholar] [CrossRef]
- Rosenbaum, E.; Jonsson, P.; Seier, K.; Qin, L.-X.; Chi, P.; Dickson, M.; Gounder, M.; Kelly, C.; Keohan, M.L.; Nacev, B.; et al. Clinical Outcome of Leiomyosarcomas With Somatic Alteration in Homologous Recombination Pathway Genes. JCO Precis. Oncol. 2020, 4, 1350–1360. [Google Scholar] [CrossRef]
- Mäkinen, N.; Aavikko, M.; Heikkinen, T.; Taipale, M.; Taipale, J.; Koivisto-Korander, R.; Bützow, R.; Vahteristo, P. Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. PLoS Genet. 2016, 12, e1005850. [Google Scholar] [CrossRef]
- Movva, S.; Wen, W.; Chen, W.; Millis, S.Z.; Gatalica, Z.; Reddy, S.; von Mehren, M.; Van Tine, B.A. Multi-platform profiling of over 2000 sarcomas: Identification of biomarkers and novel therapeutic targets. Oncotarget 2015, 6, 12234–12247. [Google Scholar] [CrossRef]
- Chan, S.H.; Lim, W.K.; Ishak, N.D.B.; Li, S.T.; Goh, W.L.; Tan, G.S.; Lim, K.H.; Teo, M.; Young, C.N.C.; Malik, S.; et al. Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas. Sci. Rep. 2017, 7, 10660. [Google Scholar] [CrossRef]
- Osei-Hwedieh, D.O.; Sedlacek, A.L.; Hernandez, L.M.; Yamoah, A.A.; Iyer, S.G.; Weiss, K.R.; Binder, R.J. Immunosurveillance shapes the emergence of neo-epitope landscapes of sarcomas, revealing prime targets for immunotherapy. JCI Insight 2023, 8, e170324. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965.e928. [Google Scholar] [CrossRef]
- Chatsirisupachai, K.; Lagger, C.; de Magalhães, J.P. Age-associated differences in the cancer molecular landscape. Trends Cancer 2022, 8, 962–971. [Google Scholar] [CrossRef]
- Li, C.H.; Haider, S.; Boutros, P.C. Age influences on the molecular presentation of tumours. Nat. Commun. 2022, 13, 208. [Google Scholar] [CrossRef]
- Gasparini, P.; Fortunato, O.; De Cecco, L.; Casanova, M.; Iannó, M.F.; Carenzo, A.; Centonze, G.; Milione, M.; Collini, P.; Boeri, M.; et al. Age-Related Alterations in Immune Contexture Are Associated with Aggressiveness in Rhabdomyosarcoma. Cancers 2019, 11, 1380. [Google Scholar] [CrossRef]
- Zou, C.; Huang, R.; Lin, T.; Wang, Y.; Tu, J.; Zhang, L.; Wang, B.; Huang, J.; Zhao, Z.; Xie, X.; et al. Age-dependent molecular variations in osteosarcoma: Implications for precision oncology across pediatric, adolescent, and adult patients. Front. Oncol. 2024, 14, 1382276. [Google Scholar] [CrossRef]
- Kundra, R.; Zhang, H.; Sheridan, R.; Sirintrapun, S.J.; Wang, A.; Ochoa, A.; Wilson, M.; Gross, B.; Sun, Y.; Madupuri, R.; et al. OncoTree: A Cancer Classification System for Precision Oncology. JCO Clin. Cancer Inform. 2021, 5, 221–230. [Google Scholar] [CrossRef]
- Evans, E.; Dholakia, J.; Abraham, J.; Zhang, J.; Oberley, M.; Stafford, P.; Herzog, T.; Spetzler, D.; Arend, R. Whole exome sequencing provides loss of heterozygosity (LoH) data comparable to that of whole genome sequencing (171). Gynecol. Oncol. 2022, 166, S100. [Google Scholar] [CrossRef]
- Cristescu, R.; Nebozhyn, M.; Zhang, C.; Albright, A.; Kobie, J.; Huang, L.; Zhao, Q.; Wang, A.; Ma, H.; Alexander Cao, Z.; et al. Transcriptomic Determinants of Response to Pembrolizumab Monotherapy across Solid Tumor Types. Clin. Cancer Res. 2022, 28, 1680–1689. [Google Scholar] [CrossRef]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [Google Scholar]
- Elbakry, A.; Juhász, S.; Chan, K.C.; Löbrich, M. ATRX and RECQ5 define distinct homologous recombination subpathways. Proc. Natl. Acad. Sci. USA 2021, 118, e2010370118. [Google Scholar] [CrossRef]
- Gillani, R.; Camp, S.Y.; Han, S.; Jones, J.K.; Chu, H.; O’Brien, S.; Young, E.L.; Hayes, L.; Mitchell, G.; Fowler, T.; et al. Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am. J. Hum. Genet. 2022, 109, 1026–1037. [Google Scholar] [CrossRef]
- Morfouace, M.; Horak, P.; Kreutzfeldt, S.; Stevovic, A.; de Rojas, T.; Denisova, E.; Hutter, B.; Bautista, F.; Oliveira, J.; Defachelles, A.-S.; et al. Comprehensive molecular profiling of sarcomas in adolescent and young adult patients: Results of the EORTC SPECTA-AYA international proof-of-concept study. Eur. J. Cancer 2023, 178, 216–226. [Google Scholar] [CrossRef]
- Juhász, S.; Elbakry, A.; Mathes, A.; Löbrich, M. ATRX Promotes DNA Repair Synthesis and Sister Chromatid Exchange during Homologous Recombination. Mol. Cell 2018, 71, 11–24.e17. [Google Scholar] [CrossRef]
- Cullen, M.M.; Floyd, W.; Dow, B.; Schleupner, B.; Brigman, B.E.; Visgauss, J.D.; Cardona, D.M.; Somarelli, J.A.; Eward, W.C. ATRX and Its Prognostic Significance in Soft Tissue Sarcoma. Sarcoma 2024, 2024, 4001796. [Google Scholar] [CrossRef]
- Darmusey, L.; Pérot, G.; Thébault, N.; Le Guellec, S.; Desplat, N.; Gaston, L.; Delespaul, L.; Lesluyes, T.; Darbo, E.; Gomez-Brouchet, A.; et al. ATRX Alteration Contributes to Tumor Growth and Immune Escape in Pleomorphic Sarcomas. Cancers 2021, 13, 2151. [Google Scholar] [CrossRef]
- Cole, K.A. Targeting ATRX Loss through Inhibition of the Cell-Cycle Checkpoint Mediator WEE1. Cancer Res. 2020, 80, 375–376. [Google Scholar] [CrossRef]
- Bartek, J.; Falck, J.; Lukas, J. CHK2 kinase--a busy messenger. Nat. Rev. Mol. Cell Biol. 2001, 2, 877–886. [Google Scholar] [CrossRef]
- Greville-Heygate, S.L.; Maishman, T.; Tapper, W.J.; Cutress, R.I.; Copson, E.; Dunning, A.M.; Haywood, L.; Jones, L.J.; Eccles, D.M. Pathogenic Variants in CHEK2 Are Associated with an Adverse Prognosis in Symptomatic Early-Onset Breast Cancer. JCO Precis. Oncol. 2020, 4, 472–485. [Google Scholar] [CrossRef]
- Schaeffer, L.; Moncollin, V.; Roy, R.; Staub, A.; Mezzina, M.; Sarasin, A.; Weeda, G.; Hoeijmakers, J.; Egly, J.-M. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 1994, 13, 2388–2392. [Google Scholar] [CrossRef]
- Consortium, A.P.G.; Consortium, A.P.G.; André, F.; Arnedos, M.; Baras, A.S.; Baselga, J.; Bedard, P.L.; Berger, M.F.; Bierkens, M.; Calvo, F. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef]
- Choy, E.; Butrynski, J.E.; Harmon, D.C.; Morgan, J.A.; George, S.; Wagner, A.J.; D’Adamo, D.; Cote, G.M.; Flamand, Y.; Benes, C.H.; et al. Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer 2014, 14, 813. [Google Scholar] [CrossRef]
- Chugh, R.; Ballman, K.V.; Helman, L.J.; Patel, S.; Whelan, J.S.; Widemann, B.; Lu, Y.; Hawkins, D.S.; Mascarenhas, L.; Glod, J.W.; et al. SARC025 arms 1 and 2: A phase 1 study of the poly(ADP-ribose) polymerase inhibitor niraparib with temozolomide or irinotecan in patients with advanced Ewing sarcoma. Cancer 2021, 127, 1301–1310. [Google Scholar] [CrossRef]
- Ingham, M.; Allred, J.B.; Chen, L.; Das, B.; Kochupurakkal, B.; Gano, K.; George, S.; Attia, S.; Burgess, M.A.; Seetharam, M.; et al. Phase II Study of Olaparib and Temozolomide for Advanced Uterine Leiomyosarcoma (NCI Protocol 10250). J. Clin. Oncol. 2023, 41, 4154–4163. [Google Scholar] [CrossRef]
- Steppan, D.A.; Pratilas, C.A.; Loeb, D.M. Targeted therapy for soft tissue sarcomas in adolescents and young adults. Adolesc. Health Med. Ther. 2017, 8, 41–55. [Google Scholar] [CrossRef]
- Vormoor, B.; Curtin, N.J. Poly(ADP-ribose) polymerase inhibitors in Ewing sarcoma. Curr. Opin. Oncol. 2014, 26, 428–433. [Google Scholar] [CrossRef]
- Federico, S.M.; Pappo, A.S.; Sahr, N.; Sykes, A.; Campagne, O.; Stewart, C.F.; Clay, M.R.; Bahrami, A.; McCarville, M.B.; Kaste, S.C.; et al. A phase I trial of talazoparib and irinotecan with and without temozolomide in children and young adults with recurrent or refractory solid malignancies. Eur. J. Cancer 2020, 137, 204–213. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G. Tumor frameshift mutation proportion predicts response to immunotherapy in mismatch repair-deficient prostate cancer. Oncologist 2021, 26, e270–e278. [Google Scholar] [CrossRef] [PubMed]
- Wilky, B.A.; Trucco, M.M.; Subhawong, T.K.; Florou, V.; Park, W.; Kwon, D.; Wieder, E.D.; Kolonias, D.; Rosenberg, A.E.; Kerr, D.A.; et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: A single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Kostine, M.; de Miranda, N.; Schöffski, P.; Lee, C.J.; Morreau, H.; Bovée, J. Mismatch repair deficiency is rare in bone and soft tissue tumors. Histopathology 2021, 79, 509–520. [Google Scholar] [CrossRef]
- Kim, K.M.; Moon, Y.J.; Park, S.-H.; Park, H.J.; Wang, S.I.; Park, H.S.; Lee, H.; Kwon, K.S.; Moon, W.S.; Lee, D.G.; et al. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients. PLoS ONE 2016, 11, e0163193. [Google Scholar] [CrossRef]
Sarcoma Subtype | Abbreviation | Sample Size | Sex Female % (N) | Age Median (Range) | Ped/AYA 0–39 Yrs % (N) |
---|---|---|---|---|---|
Overall | Overall | 5309 | 56.6% (3007) | 60 (0–90+) | 14.1% (746) |
Leiomyosarcoma | LMS | 1005 | 80.3% (807) | 60 (19–90+) | 4.6% (46) |
Gastrointestinal Stromal Tumor | GIST | 872 | 48.3% (421) | 64 (11–90+) | 6.2% (54) |
Sarcoma, NOS | SARCNOS | 686 | 49.9% (342) | 61 (0–90+) | 15.9% (109) |
Liposarcoma | LIPO | 437 | 38.4% (168) | 64 (14–90+) | 6.9% (30) |
Pleomorphic Sarcoma | PLSARC | 278 | 42.1% (117) | 68 (14–90+) | 5.8% (16) |
Angiosarcoma | ANGS | 260 | 60.4% (157) | 69 (6–90+) | 7.3% (19) |
Spindle Cell Sarcoma | SCSARC | 150 | 49.3% (74) | 62.5 (0–90+) | 14.0% (21) |
Rhabdomyosarcoma | RMS | 130 | 49.2% (64) | 38.5 (0–85) | 50.0% (65) |
Synovial Sarcoma | SYNS | 119 | 46.2% (55) | 46 (15–86) | 33.6% (40) |
Solitary Fibrous Tumor/Hemangiopericytoma | SFT | 103 | 49.5% (51) | 60 (0–86) | 9.7% (10) |
Chondrosarcoma | CHS | 96 | 37.5% (36) | 52 (17–84) | 18.8% (18) |
Osteosarcoma | OS | 94 | 30.9% (29) | 29 (6–78) | 61.7% (58) |
Malignant Peripheral Nerve Sheath Tumor | MPNST | 91 | 36.3% (33) | 40 (1–90+) | 45.1% (41) |
Chordoma | CHDM | 88 | 42.0% (37) | 61 (1–87) | 14.8% (13) |
High-Grade Endometrial Stromal Sarcoma | HGESS | 82 | 100.0% (82) | 58 (26–79) | 9.8% (8) |
Uterine Carcinosarcoma/Uterine Malignant Mixed Mullerian Tumor | UCS | 75 | 100.0% (75) | 66 (38–88) | 1.3% (1) |
Myxofibrosarcoma | MFS | 68 | 45.6% (31) | 64.5 (6–90+) | 5.9% (4) |
Ewing Sarcoma | ES | 58 | 41.4% (24) | 32 (4–86) | 63.8% (37) |
Desmoid/Aggressive Fibromatosis | DES | 57 | 59.6% (34) | 39 (1–82) | 47.4% (27) |
Undifferentiated Uterine Sarcoma | UUS | 46 | 100.0% (46) | 62 (30–83) | 8.7% (4) |
Epithelioid Hemangioendothelioma | EHAE | 41 | 43.9% (18) | 54 (12–76) | 24.4% (10) |
Fibrosarcoma | FIBS | 41 | 34.1% (14) | 67 (14–90+) | 12.2% (5) |
Uterine Sarcoma, Other | OUSARC | 36 | 100.0% (36) | 62.5 (19–89) | 2.8% (1) |
Low-Grade Endometrial Stromal Sarcoma | LGESS | 35 | 100.0% (35) | 54 (21–81) | 14.3% (5) |
Uterine Adenosarcoma | UAS | 35 | 100.0% (35) | 63 (36–87) | 2.9% (1) |
Hemangiopericytoma of the Central Nervous System | HPCCNS | 33 | 51.5% (17) | 49 (24–73) | 30.3% (10) |
Round Cell Sarcoma, NOS | RCSNOS | 33 | 54.5% (18) | 35 (5–84) | 57.6% (19) |
Epithelioid Sarcoma | EPIS | 33 | 33.3% (11) | 41 (17–80) | 42.4% (14) |
Perivascular Epithelioid Cell Tumor | PECOMA | 33 | 84.8% (28) | 55 (27–81) | 3.0% (1) |
Clear Cell Sarcoma | CCS | 28 | 46.4% (13) | 44.5 (19–84) | 39.3% (11) |
Myxoid Chondrosarcoma | MYCHS | 27 | 22.2% (6) | 56 (31–81) | 3.7% (1) |
Phyllodes Tumor of the Breast | PT | 25 | 100.0% (25) | 54 (19–88) | 12.0% (3) |
Inflammatory Myofibroblastic Tumor | IMT | 23 | 60.9% (14) | 57 (18–85) | 26.1% (6) |
Dedifferentiated Chondrosarcoma | DDCHS | 22 | 63.6% (14) | 60 (33–76) | 4.5% (1) |
Desmoplastic Small-Round-Cell Tumor | DSRCT | 22 | 22.7% (5) | 26.5 (14–77) | 77.3% (17) |
Uterine Sarcoma/Mesenchymal | USARC | 22 | 100.0% (22) | 60.5 (30–79) | 9.1% (2) |
Mesenchymal Chondrosarcoma | MCHS | 13 | 46.2% (6) | 36 (17–88) | 61.5% (8) |
Alveolar Soft Part Sarcoma | ASPS | 12 | 58.3% (7) | 22.5 (17–65) | 83.3% (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statz-Geary, K.; Elliott, A.; Bialick, S.; Serrano, C.; von Mehren, M.; Oberley, M.; Espejo-Freire, A.P.; Barreto Coelho, P.; Costa, P.A.; D’Amato, G.Z.; et al. DNA Damage Repair Pathway Alterations and Immune Landscape Differences in Pediatric/Adolescent, Young Adult (AYA) and Adult Sarcomas. Cancers 2025, 17, 1962. https://doi.org/10.3390/cancers17121962
Statz-Geary K, Elliott A, Bialick S, Serrano C, von Mehren M, Oberley M, Espejo-Freire AP, Barreto Coelho P, Costa PA, D’Amato GZ, et al. DNA Damage Repair Pathway Alterations and Immune Landscape Differences in Pediatric/Adolescent, Young Adult (AYA) and Adult Sarcomas. Cancers. 2025; 17(12):1962. https://doi.org/10.3390/cancers17121962
Chicago/Turabian StyleStatz-Geary, Kurt, Andrew Elliott, Steven Bialick, César Serrano, Margaret von Mehren, Matthew Oberley, Andrea P. Espejo-Freire, Priscila Barreto Coelho, Philippos A. Costa, Gina Z. D’Amato, and et al. 2025. "DNA Damage Repair Pathway Alterations and Immune Landscape Differences in Pediatric/Adolescent, Young Adult (AYA) and Adult Sarcomas" Cancers 17, no. 12: 1962. https://doi.org/10.3390/cancers17121962
APA StyleStatz-Geary, K., Elliott, A., Bialick, S., Serrano, C., von Mehren, M., Oberley, M., Espejo-Freire, A. P., Barreto Coelho, P., Costa, P. A., D’Amato, G. Z., Jonczak, E., Trent, J. C., Montgomery, E., Lombard, D., Rosenberg, A., & Dhir, A. (2025). DNA Damage Repair Pathway Alterations and Immune Landscape Differences in Pediatric/Adolescent, Young Adult (AYA) and Adult Sarcomas. Cancers, 17(12), 1962. https://doi.org/10.3390/cancers17121962