From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Polymerase Chain Reaction
2.3. Sanger Sequencing and NGS Panel
2.4. MinION Sequencing
2.5. MinION Sequencing Data Analysis
2.6. Statistical Analysis
3. Results
3.1. MPN
3.2. MDS
3.3. AML
3.4. CML
3.5. Sensitivity Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pardanani, A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am. J. Hematol. 2021, 96, 508–525. [Google Scholar] [CrossRef] [PubMed]
- Farmer, I.; Radia, D.H. Systemic Mastocytosis: State of the Art. Curr. Hematol. Malig. Rep. 2024, 19, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.; George, T.I.; Gotlib, J. New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood 2020, 135, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Fazio, M.; Vetro, C.; Markovic, U.; Duminuco, A.; Parisi, M.; Maugeri, C.; Mauro, E.; Parrinello, N.L.; Stagno, F.; Villari, L.; et al. A case of high-risk AML in a patient with advanced systemic mastocytosis. Clin. Case Rep. 2023, 11, e7134. [Google Scholar] [CrossRef]
- Wang, R.; Xu, P.; Chang, L.L.; Zhang, S.Z.; Zhu, H.H. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front. Oncol. 2022, 12, 972606. [Google Scholar] [CrossRef]
- Falini, B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am. J. Hematol. 2023, 98, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Kaempf, A.; Raghuwanshi, S.; Chesnokov, M.; Zhang, X.; Wang, Z.; Domling, A.; Tyner, J.W.; Camacho, C.; Gartel, A.L. Favorable outcomes of NPM1mut AML patients are due to transcriptional inactivation of FOXM1, presenting a new target to overcome chemoresistance. Blood Cancer J. 2023, 13, 128. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front. Genet. 2020, 11, 76. [Google Scholar] [CrossRef]
- Bartalucci, N.; Romagnoli, S.; Vannucchi, A.M. A blood drop through the pore: Nanopore sequencing in hematology. Trends Genet. 2022, 38, 572–586. [Google Scholar] [CrossRef]
- Grünberger, F.; Ferreira-Cerca, S.; Grohmann, D. Nanopore sequencing of RNA and cDNA molecules in Escherichia coli. RNA 2022, 28, 400–417. [Google Scholar] [CrossRef]
- Sheka, D.; Alabi, N.; Gordon, P.M.K. Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief. Bioinform. 2021, 22, bbaa403. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chi, X.; Ren, J. Applications of Oxford Nanopore Sequencing in Schizosaccharomyces pombe. Methods Mol. Biol. 2021, 2196, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Kafetzopoulou, L.E.; Pullan, S.T.; Lemey, P.; Suchard, M.A.; Ehichioya, D.U.; Pahlmann, M.; Thielebein, A.; Hinzmann, J.; Oestereich, L.; Wozniak, D.M.; et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 2019, 363, 74–77. [Google Scholar] [CrossRef]
- Hoenen, T.; Groseth, A.; Rosenke, K.; Fischer, R.J.; Hoenen, A.; Judson, S.D.; Martellaro, C.; Falzarano, D.; Marzi, A.; Squires, R.B.; et al. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerg. Infect. Dis. 2016, 22, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Brunetti, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Casieri, P.; Coccaro, N.; Tota, G.; et al. TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagn. Pathol. 2016, 11, 96. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Impera, L.; Coccaro, N.; Brunetti, C.; Minervini, A.; Casieri, P.; et al. Mutational analysis in BCR-ABL1 positive leukemia by deep sequencing based on nanopore MinION technology. Exp. Mol. Pathol. 2017, 103, 33–37. [Google Scholar] [CrossRef]
- Orsini, P.; Minervini, C.F.; Cumbo, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Coccaro, N.; Tota, G.; Casieri, P.; Impera, L.; et al. Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci. Rep. 2018, 8, 11798. [Google Scholar] [CrossRef]
- Cumbo, C.; Minervini, C.F.; Orsini, P.; Anelli, L.; Zagaria, A.; Minervini, A.; Coccaro, N.; Impera, L.; Tota, G.; Parciante, E.; et al. Nanopore Targeted Sequencing for Rapid Gene Mutations Detection in Acute Myeloid Leukemia. Genes 2019, 10, 1026. [Google Scholar] [CrossRef]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Ulysse-Garcia, M.; Di Tommaso, P. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Xiao, T.; Zhou, W. The third generation sequencing: The advanced approach to genetic diseases. Transl. Pediatr. 2020, 9, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Mantere, T.; Kersten, S.; Hoischen, A. Long-Read Sequencing Emerging in Medical Genetics. Front. Genet. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.C.; Steinberg, K.M.; Larson, D.E.; Wilson, R.K.; Mardis, E.R. The next-generation sequencing revolution and its impact on genomics. Cell 2013, 155, 27–38. [Google Scholar] [CrossRef]
- Lohmann, K.; Klein, C. Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics 2014, 11, 699–707. [Google Scholar] [CrossRef]
- Kamps, R.; Brandão, R.D.; Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef]
- Sabour, L.; Sabour, M.; Ghorbian, S. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis. Pathol. Oncol. Res. 2017, 23, 225–234. [Google Scholar] [CrossRef]
- Coccaro, N.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Next-Generation Sequencing in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2019, 20, 2929. [Google Scholar] [CrossRef]
- Lionetti, M.; Neri, A. Utilizing next-generation sequencing in the management of multiple myeloma. Expert. Rev. Mol. Diagn. 2017, 17, 653–663. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Arboleda, V.A.; Xian, R.R. An Overview of DNA Analytical Methods. Methods Mol. Biol. 2019, 1897, 385–402. [Google Scholar] [CrossRef]
- Kumar, K.R.; Cowley, M.J.; Davis, R.L. Next-Generation Sequencing and Emerging Technologies. Semin. Thromb. Hemost. 2019, 45, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Flach, J.; Shumilov, E.; Joncourt, R.; Porret, N.; Novak, U.; Pabst, T.; Bacher, U. Current concepts and future directions for hemato-oncologic diagnostics. Crit. Rev. Oncol. Hematol. 2020, 151, 102977. [Google Scholar] [CrossRef]
- Patel, A.; Belykh, E.; Miller, E.J.; George, L.L.; Martirosyan, N.L.; Byvaltsev, V.A.; Preul, M.C. MinION rapid sequencing: Review of potential applications in neurosurgery. Surg. Neurol. Int. 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed]
Sanger | NGS | MinION | |
---|---|---|---|
Sequencing method | Termination by didesoxynucleotides | Massively parallel sequencing | Nanopore sequencing |
Single-read accuracy | >99% | >99% | >99% |
Reading length | 400–900 base pairs | 50–500 base pairs | Up to a megabase |
Time per run | 20 min–3 h | 48 h * | 1 min–48 h ** |
Sensitivity | 15–20% | 1% | <1% *** |
Error rate | 0.001% | 0.1–1% | 5% **** [8] |
Versatility | Short-strand sequencing | Short-strand sequencing | Short- and long-strand sequencing |
Applications | Single-nucleotide variants (SNVs) and INDELs detection | SNVs and INDELs Detection * | SNVs, INDELs, and complex structures detection (translocations, GC-rich regions, repetitive regions) [8,9] |
Turnaround time (TAT) | 3–4 days ***** | Around 14 days ***** | 2–3 days *****, but real-time process, so in urgent cases, it could be under 24 h. |
Coverage | A single read per sample | Often > 500X | Depending on the specific application (this case > 10,000X). |
Gene | Sample ID | Gold Standard Method | Sanger/NGS Detected Variants [VAF Value] | MinION Detected Variants [VAF Value] | Matching Results |
---|---|---|---|---|---|
CALR exon 9 | #1 | Sanger | c.1154_1155insTTGTC; p.(K385Nfs*47) | c.1154_1155insTTGTC; p.(K385Nfs*47) [20%] | YES |
#2 | Sanger | c.1154_1155insTTGTC; p.(K385Nfs*47) | c.1154_1155insTTGTC; p.(K385Nfs*47) [21%] | YES | |
#3 | Sanger | c.1099_1150del; p.(L367Tfs*46) | c.1099_1150del; p.(L367Tfs*46) [29%] | YES | |
#4 | NGS | c.1105_1138del; p.(E369Rfs*50) [39%] | c.1105_1138del; p.(E369Rfs*50) [58%] | YES | |
#5 | Sanger | c.1200_1220del; p.(D400_E406del) | c.1200_1220del; p.(D400_E406del) [34%] | YES | |
#6 | Sanger | c.1139A>G; p.(E380G) | c.1139A>G; p.(E380G) [46%] | YES | |
#7 | Sanger | Non-mutated | Non-mutated | YES | |
#8 | Sanger | Non-mutated | Non-mutated | YES | |
#9 | Sanger | Non-mutated | Non-mutated | YES | |
#10 | Sanger | Non-mutated | Non-mutated | YES | |
#11 | Sanger | Non-mutated | Non-mutated | YES | |
JAK2 exon 14 | #12 | Sanger | c.1849G>T; p.(V617F) | c.1849G>T; p.(V617F) [21%] | YES |
#13 | Sanger | c.1849G>T; p.(V617F) | c.1849G>T; p.(V617F) [36%] | YES | |
#14 | Sanger | c.1849G>T; p.(V617F) | c.1849G>T; p.(V617F) [7%] | YES | |
JAK2 exon 12 | #15 | NGS | c.1612_1616delinsTT; p.(H538_K539delinsL) [7%] | c.1612_1616delinsTT; p.(H538_K539delinsL) [10%] | YES |
#16 | Sanger | c.1623_1628delAAATGA; p.(N542_E543del) | c.1623_1628delAAATGA; p.(N542_E543del) [40%] | YES | |
#17 | Sanger | c.1627_1632delGAAGAT; p.(E543_D544del) | c.1627_1632delGAAGAT; p.(E543_D544del) [28%] | YES | |
JAK2 exons 12 and 14 | #18 | Sanger | Non-mutated | Non-mutated | YES |
#19 | Sanger | Non-mutated | Non-mutated | YES | |
#20 | Sanger | Non-mutated | Non-mutated | YES | |
#21 | Sanger | Non-mutated | Non-mutated | YES | |
#22 | Sanger | Non-mutated | Non-mutated | YES | |
MPL exon 10 | #23 | Sanger | c.1544G>T; p.(W515L) | c.1544G>T; p.(W515L) [37%] | YES |
#24 | Sanger | c.1544G>T; p.(W515L) | c.1544G>T; p.(W515L) [41%] | YES | |
#25 | Sanger | c.1544G>T; p.(W515L) | c.1544G>T; p.(W515L) [70%] | YES | |
#26 | Sanger | c.1544G>T; p.(W515L) | c.1544G>T; p.(W515L) [76%] | YES | |
#27 | NGS | c.1543_1544delinsAA; p.(W515K) [40%] | c.1543_1544delinsAA; p.(W515K) [10%] | YES | |
MPL exon 10 | #28 | NGS | c.1544G>T; p.(W515L) [39%] | c.1544G>T; p.(W515L) [26%] | YES |
#29 | NGS | c.1543_1544delinsAA; p.(W515K) [42%] | c.1543_1544delinsAA; p.(W515K) [27%] | YES | |
#30 | Sanger | Non-mutated | Non-mutated | YES | |
#31 | Sanger | Non-mutated | Non-mutated | YES | |
#32 | Sanger | Non-mutated | Non-mutated | YES | |
#33 | Sanger | Non-mutated | Non-mutated | YES | |
#34 | Sanger | Non-mutated | Non-mutated | YES | |
CSF3R exon 17 | #35 | NGS | c.2503G>A; p.(E835K) [50%] | c.2503G>A; p.(E835K) [47%] | YES |
#36 | NGS | c.2503G>A; p.(E835K) [50%] | c.2503G>A; p.(E835K) [46%] | YES | |
#37 | NGS | c.2503G>A; p.(E835K) [50%] | c.2503G>A; p.(E835K) [47%] | YES | |
CSF3R exon 14 | #38 | NGS | c.1853C>T; p.(T618I) [38%] | c.1853C>T; p.(T618I) [30%] | YES |
CSF3R exon 17 | #38 | NGS | c.2326C>T; p.(Q776*) [84%] | c.2326C>T; p.(Q776*) [70%] | YES |
CSF3R exon 17 | #39 | NGS | c.2386C>T; p.(R796C) [39%] | c.2386C>T; p.(R796C) [57%] | YES |
CSF3R exon 14 | #40 | NGS | c.1853C>T; p.(T618I) [49%] | c.1853C>T; p.(T618I) [32%] | YES |
CSF3R exon 17 | #41 | NGS | c.2503G>A; p.(E835K) [50%] | c.2503G>A; p.(E835K) [47%] | YES |
CSF3R exons 14 and 17 | #42 | Sanger | Non-mutated | Non-mutated | YES |
#43 | Sanger | Non-mutated | Non-mutated | YES | |
#44 | Sanger | Non-mutated | Non-mutated | YES | |
#45 | Sanger | Non-mutated | Non-mutated | YES | |
#46 | Sanger | Non-mutated | Non-mutated | YES | |
SETBP1 exon 4 | #47 | NGS | c.2602G>T; p.(D868Y) [44%] | c.2602G>T; p.(D868Y) [41%] | YES |
#48 | Sanger | c.2602G>T; p.(D868Y) | c.2602G>T; p.(D868Y) [40%] | YES | |
#49 | NGS | c.2602G>A; p.(D868N) [51%] | c.2602G>A; p.(D868N) [47%] | YES | |
#50 | NGS | c.2608G>A; p.(G870S) [46%] | c.2608G>A; p.(G870S) [55%] | YES | |
#51 | Sanger | c.2608G>A; p.(G870S) | c.2608G>A; p.(G870S) [50%] | YES | |
#52 | Sanger | c.2612T>C; p.(I871T) | c.2612T>C; p.(I871T) [52%] | YES | |
#53 | Sanger | c.2602G>A; p.(D868N) | c.2602G>A; p.(D868N) [45%] | YES | |
#54 | Sanger | Non-mutated | Non-mutated | YES | |
#55 | Sanger | Non-mutated | Non-mutated | YES | |
#56 | Sanger | Non-mutated | Non-mutated | YES | |
#57 | Sanger | Non-mutated | Non-mutated | YES | |
#58 | Sanger | Non-mutated | Non-mutated | YES |
Gene | Sample ID | Gold Standard Method | Sanger/NGS Detected Variants [VAF Value] | MinION Detected Variants [VAF Value] | Matching Results |
---|---|---|---|---|---|
SF3B1 exon 15 | #59 | Sanger | c.2098A>G; p.(K700E) | c.2098A>G; p.(K700E) [30%] | YES |
#60 | Sanger | c.2098A>G; p.(K700E) | c.2098A>G; p.(K700E) [36%] | YES | |
#61 | Sanger | c.2098A>G; p.(K700E) | c.2098A>G; p.(K700E) [36%] | YES | |
SF3B1 exon 14 | #62 | Sanger | c.1997A>G; p.(K666R) | c.1997A>G; p.(K666R) [57%] | YES |
SF3B1 exon 15 | #63 | Sanger | c.2098A>G; p.(K700E) | c.2098A>G; p.(K700E) [35%] | YES |
SF3B1 exons 12–16 | #64 | Sanger | Non-mutated | Non-mutated | YES |
#65 | Sanger | Non-mutated | Non-mutated | YES | |
#66 | Sanger | Non-mutated | Non-mutated | YES | |
#67 | Sanger | Non-mutated | Non-mutated | YES | |
#68 | Sanger | Non-mutated | Non-mutated | YES |
Gene | Sample ID | Gold Standard Method | Sanger/NGS Detected Variants [VAF Value] | MinION Detected Variants [VAF Value] | Matching Results |
---|---|---|---|---|---|
NPM1 exon 12 | #69 | Sanger | Type A: c.863_864insTCTG; p.(W288Cfs*12) | c.863_864insTCTG; p.(W288Cfs*12) [33%] | YES |
#70 | Sanger | Type A: c.863_864insTCTG; p.(W288Cfs*12) | c.863_864insTCTG; p.(W288Cfs*12) [34%] | YES | |
#71 | Sanger | Type A: c.863_864insTCTG; p.(W288Cfs*12) | c.863_864insTCTG; p.(W288Cfs*12) [22%] | YES | |
#72 | Sanger | Type B: c.863_864insCATG; p.(W288Cfs*12) | c.863_864insCATG; p.(W288Cfs*12) [41%] | YES | |
#73 | Sanger | Type B: c.863_864insCATG; p.(W288Cfs*12) | c.863_864insCATG; p.(W288Cfs*12) [45%] | YES | |
#74 | NGS | Type D: c.863_864insCCTG; p.(W288Cfs*12) [42%] | c.863_864insCCTG; p.(W288Cfs*12) [42%] | YES | |
#75 | NGS | Type D: c.863_864insCCTG; p.(W288Cfs*12) [44%] | c.863_864insCCTG; p.(W288Cfs*12) [38%] | YES | |
#76 | Sanger | Type D: c.863_864insCCTG; p.(W288Cfs*12) | c.863_864insCCTG; p.(W288Cfs*12) [38%] | YES | |
#77 | Sanger | Type D: c.863_864insCCTG; p.(W288Cfs*12) | c.863_864insCCTG; p.(W288Cfs*12) [38%] | YES | |
#78 | Sanger | Type D: c.863_864insCCTG; p.(W288Cfs*12) | c.863_864insCCTG; p.(W288Cfs*12) [32%] | YES | |
#79 | Sanger | Non-mutated | Non-mutated | YES | |
#80 | Sanger | Non-mutated | Non-mutated | YES | |
KIT exon 17 | #81 | NGS | c.2447A>T; p.(D816V) [16%] | c.2447A>T; p.(D816V) [16%] | YES |
#82 | NGS | c.2447A>T; p.(D816V) [14%] | c.2447A>T; p.(D816V) [14%] | YES | |
#83 | NGS | c.2447A>T; p.(D816V) [26%] | c.2447A>T; p.(D816V) [27%] | YES | |
KIT exons 8 and 17 | #84 | Sanger | Non-mutated | Non-mutated | YES |
#85 | Sanger | Non-mutated | Non-mutated | YES | |
#86 | Sanger | Non-mutated | Non-mutated | YES | |
#87 | Sanger | Non-mutated | Non-mutated | YES | |
#88 | Sanger | Non-mutated | Non-mutated | YES | |
IDH2 exon 4 | #89 | NGS | c.419G>A; p.(R140Q) [44%] | c.419G>A; p.(R140Q) [54%] | YES |
IDH1 exon 4 | #90 | NGS | c.394C>G; p.(R132G) [5%] | c.394C>G; p.(R132G) [8%] | YES |
#91 | Sanger | c.394C>G; p.(R132G) | c.394C>G; p.(R132G) [64%] | YES | |
#92 | NGS | c.395G>A; p.(R132H) [43%] | c.395G>A; p.(R132H) [50%] | YES | |
IDH1 exon 4 | #93 | NGS | c.395G>A; p.(R132H) [22%] | c.395G>A; p.(R132H) [46%] | YES |
IDH2 exon 4 | #94 | NGS | c.419G>A; p.(R140Q) [41%] | c.419G>A; p.(R140Q) [58%] | YES |
#95 | NGS | c.419G>A; p.(R140Q) [45%] | c.419G>A; p.(R140Q) [59%] | YES | |
IDH1 exon 4 and IDH2 exon 4 | #96 | Sanger | Non-mutated | Non-mutated | YES |
#97 | Sanger | Non-mutated | Non-mutated | YES | |
#98 | Sanger | Non-mutated | Non-mutated | YES | |
#99 | Sanger | Non-mutated | Non-mutated | YES | |
#100 | Sanger | Non-mutated | Non-mutated | YES | |
CEBPA exon 1 | #101 | Sanger | c.303_304delinsT; p.(G102Afs*58) | c.303_304delinsT; p.(G102Afs*58) [51%] | YES |
#101 | Sanger | c.962A>G; p.(N321S) | c.962A>G; p.(N321S) [53%] | YES | |
#102 | Sanger | c.570_571insGCACCC; p.(S190_H191insAP) | c.570_571insGCACCC; p.(S190_H191insAP) [22%] | YES | |
#103 | Sanger | c.213_216delCGCC; p.(A72Sfs*87) | c.213_216delCGCC; p.(A72Sfs*87) [19%] | YES | |
#104 | Sanger | c.482A>T; p.(K161M) | Non-mutated | NO* | |
#105 | Sanger | c.146C>T; p.(P49L) | c.146C>T; p.(P49L) [55%] | YES | |
#106 | Sanger | c.570_571insGCACCC; p.(S190_H191insAP) | c.570_571insGCACCC; p.(S190_H191insAP) [25%] | YES | |
#107 | Sanger | Non-mutated | Non-mutated | YES | |
#108 | Sanger | Non-mutated | Non-mutated | YES | |
#109 | Sanger | Non-mutated | Non-mutated | YES | |
#110 | Sanger | Non-mutated | Non-mutated | YES | |
#111 | Sanger | Non-mutated | Non-mutated | YES | |
NRAS exon 3 | #112 | NGS | c.183A>T; p.(Q61H) [35%] | c.183A>T; p.(Q61H) [48%] | YES |
NRAS exon 2 | #113 | NGS | c.34G>A; p.(G12S) [17%] | c.34G>A; p.(G12S) [16%] | YES |
#113 | NGS | c.35G>A; p.(G12D) [10%] | c.35G>A; p.(G12D) [11%] | YES | |
#114 | NGS | c.35G>T; p.(G12V) [17%] | c.35G>T; p.(G12V) [15%] | YES | |
NRAS exon 3 | #115 | NGS | c.182A>G; p.(Q61R) [43%] | c.182A>G; p.(Q61R) [32%] | YES |
NRAS exon 2 | #116 | NGS | c.34G>A; p.(G12S) [24%] | c.34G>A; p.(G12S) [22%] | YES |
NRAS exon 2–3 | #117 | Sanger | Non-mutated | Non-mutated | YES |
#118 | Sanger | Non-mutated | Non-mutated | YES | |
#119 | Sanger | Non-mutated | Non-mutated | YES | |
#120 | Sanger | Non-mutated | Non-mutated | YES | |
#121 | Sanger | Non-mutated | Non-mutated | YES | |
KRAS exon 2 | #122 | NGS | c.35G>C; p.(G12A) [7%] | c.35G>C; p.(G12A) [7%] | YES |
#122 | NGS | c.34G>A; p.(G12S) [5%] | c.34G>A; p.(G12S) [6%] | YES | |
#123 | NGS | c.35G>C; p.(G12A) [38%] | c.35G>C; p.(G12A) [35%] | YES | |
#124 | NGS | c.35G>C; p.(G12A) [9%] | c.35G>C; p.(G12A) [9%] | YES | |
#125 | NGS | c.35G>C; p.(G12A) [38%] | c.35G>C; p.(G12A) [38%] | YES | |
#126 | NGS | c.34G>C; p.(G12R) [14%] | c.34G>C; p.(G12R) [10%] | YES | |
#127 | NGS | c.35G>A; p.(G12D) [47%] | c.35G>A; p.(G12D) [47%] | YES | |
KRAS exon 2–3 | #128 | Sanger | Non-mutated | Non-mutated | YES |
#129 | Sanger | Non-mutated | Non-mutated | YES | |
#130 | Sanger | Non-mutated | Non-mutated | YES | |
#131 | Sanger | Non-mutated | Non-mutated | YES | |
#132 | Sanger | Non-mutated | Non-mutated | YES | |
TP53 exons 5–9 | #133 | NGS | c.743G>A; p.(R248Q) [21%] | c.743G>A; p.(R248Q) [30%] | YES |
TP53 exons 5–6 | #134 | NGS | c.216del; p.(V73Wfs*50) [98%] | c.216del; p.(V73Wfs*50) [88%] | YES |
TP53 exons 5–6 | #135 | Sanger | c.488A>G; p.(Y163C) | c.488A>G; p.(Y163C) [89%] | YES |
TP53 exons 8–9 | #136 | Sanger | c.833C>T; p.(P278L) | c.833C>T; p.(P278L) [13%] | YES |
TP53 exons 5–6 | #137 | Sanger | c.535C>T; p.(H179Y) | c.535C>T; p.(H179Y) [81%] | YES |
#138 | Sanger | c.641A>G; p.(H214R) | c.641A>G; p.(H214R) [39%] | YES | |
TP53 exons 8–9 | #139 | Sanger | c.853G>A; p.(E285K) | c.853G>A; p.(E285K) [88%] | YES |
TP53 exons 3–10 | #140 | Sanger | Non-mutated | Non-mutated | YES |
#141 | Sanger | Non-mutated | Non-mutated | YES | |
#142 | Sanger | Non-mutated | Non-mutated | YES | |
#143 | Sanger | Non-mutated | Non-mutated | YES | |
#144 | Sanger | Non-mutated | Non-mutated | YES |
Gene | Sample ID | Gold Standard Method | Sanger Detected Variants | MinION Detected Variants [VAF Value] | Matching Results |
---|---|---|---|---|---|
ABL1 exon 4 | #145 | Sanger | c.763G>A; p.(E255K) | c.763G>A; p.(E255K) [94%] | YES |
ABL1 exon 6 | #146 | Sanger | c.944C>T; p.(T315I) | c.944C>T; p.(T315I) [99%] | YES |
ABL1 exon 4 | #147 | Sanger | c.749G>A; p.(G250E) | c.749G>A; p.(G250E) [99%] | YES |
#148 | Sanger | c.730A>G; p.(M244V) | c.730A>G; p.(M244V) [8%] | YES | |
#149 | Sanger | c.749G>A; p.(G250E) | c.749G>A; p.(G250E) [38%] | YES | |
#150 | Sanger | c.749G>A; p.(G250E) | c.749G>A; p.(G250E) [34%] | YES | |
ABL1 exons 4–7 | #151 | Sanger | Non-mutated | Non-mutated | YES |
ABL1 exons 4–7 | #152 | Sanger | Non-mutated | Non-mutated | YES |
ABL1 exons 4–7 | #153 | Sanger | Non-mutated | Non-mutated | YES |
ABL1 exons 4–7 | #154 | Sanger | Non-mutated | Non-mutated | YES |
Gene: Disease | Sample ID | Gold Standard Method | NGS Detected Variants [VAF] | MinION Detected Variants [VAF] | Matching Results |
---|---|---|---|---|---|
SF3B1 exon 14: MDS | #155 | NGS | c.1997A>C; p.(K666T) [1%] | c.1997A>C; p.(K666T) [2%] | YES |
#156 | NGS | c.1874G>T; p.(R625L) [1%] | c.1874G>T; p.(R625L) [10%] | YES | |
KIT exon 17: AML | #157 | NGS | c.2447A>T; p.(D816V) [2%] | c.2447A>T; p.(D816V) [2%] | YES |
#158 | NGS | c.2446G>C; p.(D816H) [4%] | c.2446G>C; p.(D816H) [6%] | YES | |
#159 | NGS | c.2466T>G; p.(N822K) [2%] | c.2466T>G; p.(N822K) [2%] | YES | |
#160 | NGS | c.2447A>T; p.(D816V) [1%] | c.2447A>T; p.(D816V) [1%] | YES | |
IDH1 exon 4: AML | #93 | NGS | c.394C>G; p.(R132G) [2%] | c.394C>G; p.(R132G) [1%] | YES |
IDH2 exon 4: AML | #93 | NGS | c.419G>A; p.(R140Q) [2%] | c.419G>A; p.(R140Q) [6%] | YES |
NRAS exon 2: AML | #112 | NGS | c.38G>A; p.(G13D) [1%] | c.38G>A; p.(G13D) [2%] | YES |
#161 | NGS | c.38G>A; p.(G13D) [3%] | c.38G>A; p.(G13D) [4%] | YES | |
#161 | NGS | c.38G>T; p.(G13V) [3%] | c.38G>T; p.(G13V) [2%] | YES | |
#161 | NGS | c.34G>A; p.(G12S) [2%] | c.34G>A; p.(G12S) [1%] | YES | |
#162 | NGS | c.38G>A; p.(G13D) [3%] | c.38G>A; p.(G13D) [5%] | YES | |
KRAS exon 2: AML | #163 | NGS | c.38G>A; p.(G13D) [1%] | c.38G>A; p.(G13D) [2%] | YES |
#122 | NGS | c.34G>T; p.(G12C) [4%] | c.34G>T; p.(G12C) [4%] | YES | |
#164 | NGS | c.38G>A; p.(G13D) [2%] | c.38G>A; p.(G13D) [3%] | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larráyoz, M.J.; Luri-Martin, P.; Mañu, A.; Churruca, O.; Gordillo, N.; Erdozain, I.; Esteban-Figuerola, A.; de Miguel, C.; Robles, D.; García-Fortes, M.; et al. From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis. Cancers 2025, 17, 1811. https://doi.org/10.3390/cancers17111811
Larráyoz MJ, Luri-Martin P, Mañu A, Churruca O, Gordillo N, Erdozain I, Esteban-Figuerola A, de Miguel C, Robles D, García-Fortes M, et al. From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis. Cancers. 2025; 17(11):1811. https://doi.org/10.3390/cancers17111811
Chicago/Turabian StyleLarráyoz, María José, Pablo Luri-Martin, Amagoia Mañu, Oihane Churruca, Natalia Gordillo, Irache Erdozain, Ada Esteban-Figuerola, Carlos de Miguel, Diego Robles, María García-Fortes, and et al. 2025. "From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis" Cancers 17, no. 11: 1811. https://doi.org/10.3390/cancers17111811
APA StyleLarráyoz, M. J., Luri-Martin, P., Mañu, A., Churruca, O., Gordillo, N., Erdozain, I., Esteban-Figuerola, A., de Miguel, C., Robles, D., García-Fortes, M., Rifón Roca, J., Alfonso-Pierola, A., Prósper, F., Ariceta, B., & Calasanz, M. J. (2025). From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis. Cancers, 17(11), 1811. https://doi.org/10.3390/cancers17111811