AI-Augmented Advances in the Diagnostic Approaches to Endometrial Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Histology
3.2. Multi-Omics
3.3. Imaging
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
EC | Endometrial Cancer |
MRI | Magnetic resonance imaging |
CT | Computed tomography |
References
- Butt, S.R.; Soulat, A.; Lal, P.M.; Fakhor, H.; Patel, S.K.; Ali, M.B.; Arwani, S.; Mohan, A.; Majumder, K.; Kumar, V.; et al. Impact of artificial intelligence on the diagnosis, treatment and prognosis of endometrial cancer. Ann. Med. Surg. 2024, 86, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, J.; Li, Z.; Wang, T.; Wang, J. Global Trends in Incidence and Mortality Rates of Endometrial Cancer Among Individuals Aged 55 years and Above From 1990 to 2021: An Analysis of the Global Burden of Disease. Int. J. Women S Health 2025, 17, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Baker-Rand, H.; Kitson, S.J. Recent advances in endometrial cancer prevention, early diagnosis and treatment. Cancers 2024, 16, 1028. [Google Scholar] [CrossRef]
- Mena, A. UE Dostarlimab+Chemotherapy Approval Endometrial Cancer; VHIO: Barcelona, Spain, 2025; Available online: https://vhio.net/2025/01/23/european-commission-expands-dostarlimab-plus-chemotherapy-approval-to-all-adult-patients-with-primary-advanced-or-recurrent-endometrial-cancer/#:~:text=In%20Europe%2C%20approximately%20121%2C000%20people,recurrent%20endometrial%20cancer%20each%20year.&text=Approximately%2015%2D20%25%20of%20patients,at%20the%20time%20of%20diagnosis (accessed on 20 April 2025).
- EU Country Cancer Profile: Bulgaria 2025; OECD: Paris, France, 2025. [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef]
- Constantine, G.D.; Kessler, G.; Graham, S.; Goldstein, S.R. Increased incidence of endometrial cancer following the Women’s Health Initiative: An Assessment of Risk Factors. J. Women S Health 2018, 28, 237–243. [Google Scholar] [CrossRef]
- Haribabu, V.; Girigoswami, K.; Sharmiladevi, P.; Girigoswami, A. Water–Nanomaterial interaction to escalate Twin-Mode magnetic resonance Imaging. ACS Biomater. Sci. Eng. 2020, 6, 4377–4389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Zhang, J.; Wang, C.; Wang, Y.; Chen, H.; Shan, L.; Huo, J.; Gu, J.; Ma, X. Deep learning model for classifying endometrial lesions. J. Transl. Med. 2021, 19, 10. [Google Scholar] [CrossRef]
- Fell, C.; Mohammadi, M.; Morrison, D.; Arandjelović, O.; Syed, S.; Konanahalli, P.; Bell, S.; Bryson, G.; Harrison, D.J.; Harris-Birtill, D. Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence. PLoS ONE 2023, 18, e0282577. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Sone, K.; Noda, K.; Yoshida, K.; Toyohara, Y.; Kato, K.; Inoue, F.; Kukita, A.; Taguchi, A.; Nishida, H.; et al. Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy. PLoS ONE 2021, 16, e0248526. [Google Scholar] [CrossRef]
- Li, Q.; Wang, R.; Xie, Z.; Zhao, L.; Wang, Y.; Sun, C.; Han, L.; Liu, Y.; Hou, H.; Liu, C.; et al. Clinically applicable pathological diagnosis system for cell clumps in endometrial cancer screening via deep convolutional neural networks. Cancers 2022, 14, 4109. [Google Scholar] [CrossRef]
- Sun, H.; Zeng, X.; Xu, T.; Peng, G.; Ma, Y. Computer-Aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms. IEEE J. Biomed. Health Inform. 2019, 24, 1664–1676. [Google Scholar] [CrossRef] [PubMed]
- Boroń, D.; Zmarzły, N.; Wierzbik-Strońska, M.; Rosińczuk, J.; Mieszczański, P.; Grabarek, B.O. Recent multiomics approaches in endometrial cancer. Int. J. Mol. Sci. 2022, 23, 1237. [Google Scholar] [CrossRef]
- Dou, Y.; Katsnelson, L.; Gritsenko, M.A.; Hu, Y.; Reva, B.; Hong, R.; Wang, Y.-T.; Kolodziejczak, I.; Lu, R.J.-H.; Tsai, C.-F.; et al. Proteogenomic insights suggest druggable pathways in endometrial carcinoma. Cancer Cell 2023, 41, 1586–1605.e15. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Liu, W.; DeLair, D.; Razavian, N.; Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2021, 2, 100400. [Google Scholar] [CrossRef]
- Yi, R.; Xie, L.; Wang, X.; Shen, C.; Chen, X.; Qiao, L. Multi-Omic profiling of Multi-Biosamples reveals the role of amino acid and nucleotide metabolism in endometrial cancer. Front. Oncol. 2022, 12, 861142. [Google Scholar] [CrossRef]
- Njoku, K.; Pierce, A.; Chiasserini, D.; Geary, B.; Campbell, A.E.; Kelsall, J.; Reed, R.; Geifman, N.; Whetton, A.D.; Crosbie, E.J. Detection of endometrial cancer in cervico-vaginal fluid and blood plasma: Leveraging proteomics and machine learning for biomarker discovery. EBioMedicine 2024, 102, 105064. [Google Scholar] [CrossRef]
- Volinsky-Fremond, S.; Horeweg, N.; Andani, S.; Wolf, J.B.; Lafarge, M.W.; De Kroon, C.D.; Ørtoft, G.; Høgdall, E.; Dijkstra, J.; Jobsen, J.J.; et al. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat. Med. 2024, 30, 1962–1973. [Google Scholar] [CrossRef] [PubMed]
- Changhez, J.; James, S.; Jamala, F.; Khan, S.; Khan, M.Z.; Gul, S.; Zainab, I. Evaluating the efficacy and Accuracy of AI-Assisted diagnostic techniques in endometrial carcinoma: A systematic review. Cureus 2024, 16, e60973. [Google Scholar] [CrossRef] [PubMed]
- Aparna, P.R.; Libish, T.M. Image processing and machine learning approaches for the automatic diagnosis of endometrial cancer. Int. J. Health Sci. 2022, 6, 2827–2847. [Google Scholar] [CrossRef]
- Capasso, I.; Cucinella, G.; Wright, D.E.; Takahashi, H.; De Vitis, L.A.; Gregory, A.V.; Kim, B.; Reynolds, E.; Fumagalli, D.; Occhiali, T.; et al. Artificial intelligence model for enhancing the accuracy of transvaginal ultrasound in detecting endometrial cancer and endometrial atypical hyperplasia. Int. J. Gynecol. Cancer 2024, 34, 1547–1555. [Google Scholar] [CrossRef]
- Moro, F.; Ciancia, M.; Zace, D.; Vagni, M.; Tran, H.E.; Giudice, M.T.; Zoccoli, S.G.; Mascilini, F.; Ciccarone, F.; Boldrini, L.; et al. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. Int. J. Cancer 2024, 155, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Urushibara, A.; Saida, T.; Mori, K.; Ishiguro, T.; Inoue, K.; Masumoto, T.; Satoh, T.; Nakajima, T. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: A comparison with radiologists. BMC Med. Imaging 2022, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Shen, M.; Yang, B.; Zhou, Q.; Yi, Y.; Liu, W.; Zhang, G.; Yang, G.; Zhang, H. Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: A preliminary study in a single institution. Eur. Radiol. 2020, 30, 4985–4994. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Wang, Y.; Liang, Y.; Zhang, A. Evaluation and monitoring of endometrial cancer based on magnetic resonance imaging features of deep learning. Contrast Media Mol. Imaging 2022, 2022, 5198592. [Google Scholar] [CrossRef]
- Bourgioti, C.; Chatoupis, K.; Tzavara, C.; Antoniou, A.; Rodolakis, A.; Moulopoulos, L.A. Predictive ability of maximal tumor diameter on MRI for high-risk endometrial cancer. Abdom. Radiol. 2016, 41, 2484–2495. [Google Scholar] [CrossRef]
- Bereby-Kahane, M.; Dautry, R.; Matzner-Lober, E.; Cornelis, F.; Sebbag-Sfez, D.; Place, V.; Mezzadri, M.; Soyer, P.; Dohan, A. Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis. Diagn. Interv. Imaging 2020, 101, 401–411. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R. Clinical value analysis of combined vaginal ultrasound, magnetic resonance dispersion weighted imaging, and multilayer spiral CT in the diagnosis of endometrial cancer using deep VGG-16 AdABoost Hybrid classifier. J. Oncol. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2018, 25, 44–56. [Google Scholar] [CrossRef]
- Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2018, 25, 30–36. [Google Scholar] [CrossRef]
Study | Dataset Size | AI Application | Main Results/Conclusions |
---|---|---|---|
Zhang et al. Journal of Translational Medicine (2021) [9] | 1851 images from 454 patients; trained with 6478 images, tested on 250 | CNN (VGGNet-16) for classifying endometrial lesions via hysteroscopic images | Achieved 80.8% accuracy overall; 90.8% accuracy distinguishing benign vs. malignant/premalignant lesions; outperformed gynecologists in lesion classification. |
Fell et al. PLoS ONE (2023) [10] | 2909 whole-slide images (WSIs) with annotated malignant and benign areas | CNN to classify endometrial biopsy WSIs into malignant, other/benign, or insufficient | Achieved 90% overall accuracy; 97% accuracy for malignant slides; potential to prioritize pathologist review and speed up cancer diagnosis. |
Tahakashi et al. PLoS ONE (2021) [11] | 177 patients with various endometrial conditions | Three deep-neural-network models with a continuity-analysis method for hysteroscopic image diagnosis | Combined model with continuity analysis reached 90.29% accuracy, 91.66% sensitivity, and 89.36% specificity; improved timely and accurate EC diagnosis. |
Li et al. Cancers (2022) [12] | 113 patient samples; 15,913 cytology slide images processed; 39,000 ECC patches | U-Net for segmentation and DenseNet201 for ECC classification from cytology slides | Achieved 93.5% accuracy, 92.2% specificity, and 92.0% sensitivity; outperformed other models and matched expert pathologists; supports integration of AI in cytological screening. |
Sun et al. IEEE Journal of Biomedical and Health Informatics (2020) [13] | >3500 H&E-stained histopathological images; external validation conducted | CNN-based CADx system with attention mechanism for histological classification (HIENet) | Ten-fold CV accuracy of 76.91% (4-class); binary AUC of 0.9579; external validation accuracy 84.5%, AUC 0.9829; outperformed pathologists and existing CNN models in both interpretability and accuracy. |
Study | Dataset Size | AI Application | Main Results/Conclusions |
---|---|---|---|
Dou et al. Cancer Cell (2023) [15] | 138 EC tumors + 20 normal tissues across 10 omics platforms | Deep learning to analyze histopathology images and predict EC subtypes and mutations | Identified new biomarkers (e.g., APM activity, PIK3R1 mutation); AI models effectively predicted EC subtypes and treatment-relevant mutations; supported computational pathology as diagnostic tool. |
Hong et al. Cell Reports Medicine (2021) [16] | 496 slides from 456 patients were included to form a mixed dataset | Multi-resolution CNN to predict histological and molecular subtypes, and gene mutations | Accurately identified EC subtypes and 18 common gene mutations; outperformed conventional methods; could replace some genomic testing with rapid image-based analysis. |
Yi et al. Frontiers in Oncology (2022) [17] | 44 EC patients + 43 controls | Multi-omics integration of metabolomics and proteomics | Identified metabolic alterations in tissues, urine, and brushings; highlighted potential for non-invasive diagnostic biomarkers for early EC detection. |
Njoku et al. EBioMedicine (2024) [18] | 53 symptomatic post-menopausal women with and 65 without endometrial cancer. | Machine learning on cervico-vaginal and plasma proteomic data | Identified five-protein signature with AUC 0.95, 91% sensitivity, 86% specificity; performed well even in stage I EC; supports non-invasive, fluid-based EC screening. |
Volinsky-Fremond et al. Nature Medicine (2024) [19] | 2000 patients across 8 cohorts | Multimodal deep learning model using H&E slides and tumor stage | Predicted distant recurrence with C-indices up to 0.828; stratified patients by recurrence risk; outperformed conventional risk stratification; requires only standard clinical data, increasing accessibility. |
Study | Dataset Size | Imaging Modality | AI Application | Main Results/Conclusions |
---|---|---|---|---|
Capasso et al. International Journal of Gynecological Cancer (2024) [22] | 302 patients | Ultrasound | Radiomics + ML classifiers | Top classifier achieved AUC 0.90 (validation), 0.88 (test); sensitivity 0.87, specificity 0.86. |
Moro et al. International Journal of Cancer (2024) [23] | 50 studies (5 on EC) | Ultrasound | ML/DL for malignancy risk and invasion prediction | AUCs for EC prediction: 0.90–0.92; strong performance for malignancy risk and myometrial infiltration. |
Urushibara et al. BMC Medical Imaging (2022) [24] | 204 EC and 184 non-cancer patients | MRI | CNN (Deep Learning) | AUC: 0.88–0.95; performance comparable to radiologists; improved with diverse image training. |
Chen et al. European Radiology (2020) [25] | 530 EC patients | MRI | YOLOv3 + Deep Learning classifier | Accuracy: 84.78%; with radiologist: 86.2%; strong NPV (96.3%) for deep invasion detection. |
Tao et al. Contrast Media & Molecular Imaging (2022) [26] | 80 patients | MRI | Shallow CNN, ResNet, Optimized NN | 90% of patients correctly identified as stage I EC; supports utility of MRI-based DL in diagnosis. |
Bourgioti et al. Abdominal Radiology (2016) [27] | 105 pateints | MRI | Predictive model | Sensitivity: 78%, Specificity: 92.7%, PPV: 90.5% for detecting pelvic lymph node metastasis. |
Bereby-Kahane et al. Diagnostic and Interventional Imaging (2020) [28] | 73 patients | MRI | Texture analysis (TexRAD) | Low AUC for high-grade tumor (0.64) and LVSI (0.59); limited predictive utility. |
Wang et al. Journal of Oncology (2022) [29] | 100 patients | Transvaginal ultrasound, MRDWI, CT | VGG-16 + AdaBoost | Combined imaging group had significantly better diagnostic performance across all metrics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, N.M.; Khalid, U.; Markov, D.; Bechev, K.; Aleksiev, V.; Markov, G.; Poryazova, E. AI-Augmented Advances in the Diagnostic Approaches to Endometrial Cancer. Cancers 2025, 17, 1810. https://doi.org/10.3390/cancers17111810
Ansari NM, Khalid U, Markov D, Bechev K, Aleksiev V, Markov G, Poryazova E. AI-Augmented Advances in the Diagnostic Approaches to Endometrial Cancer. Cancers. 2025; 17(11):1810. https://doi.org/10.3390/cancers17111810
Chicago/Turabian StyleAnsari, Nabiha Midhat, Usman Khalid, Daniel Markov, Kristian Bechev, Vladimir Aleksiev, Galabin Markov, and Elena Poryazova. 2025. "AI-Augmented Advances in the Diagnostic Approaches to Endometrial Cancer" Cancers 17, no. 11: 1810. https://doi.org/10.3390/cancers17111810
APA StyleAnsari, N. M., Khalid, U., Markov, D., Bechev, K., Aleksiev, V., Markov, G., & Poryazova, E. (2025). AI-Augmented Advances in the Diagnostic Approaches to Endometrial Cancer. Cancers, 17(11), 1810. https://doi.org/10.3390/cancers17111810