Therapeutic Immunomodulation in Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Basic Biology of Immune Checkpoint Inhibitors
2.1. Tumor Microenvironment
2.2. T-Cells
2.3. PD-1
2.4. PD-L1
2.5. CTLA-4
3. Immune Checkpoint Inhibitors and Clinical Trials
3.1. Nivolumab
3.2. Pembrolizumab
3.3. Toripalimab
3.4. Durvalumab
3.5. Atezolizumab
3.6. Toxicity Profile of ICIs
3.7. Anti-Lymphocyte Activation Gene 3 (LAG-3)
3.8. Radiotherapy Subsequent to Anti-PD-1 Therapy
3.9. Regulatory T-Cells (Tregs)
3.10. CAR T-Cells
3.11. Tumor Antigen Vaccines
3.12. Combination of Anti-VEGF Drugs with ICIs
4. Immune Checkpoint Based on Molecular Classification of Gastric Cancer
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Liu, Y.; Zhang, S.; Wei, L.; Cheng, H.; Wang, J.; Wang, J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis. 2022, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Kindlund, B.; Sjoling, A.; Yakkala, C.; Adamsson, J.; Janzon, A.; Hansson, L.E.; Hermansson, M.; Janson, P.; Winqvist, O.; Lundin, S.B. CD4+ regulatory T cells in gastric cancer mucosa are proliferating and express high levels of IL-10 but little TGF-beta. Gastric Cancer 2017, 20, 116–125. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, X.; Zhang, Y.; Zhang, Y.; Ying, J.; Zhang, W.; Zhong, Q.; Zhou, A.; Zeng, Y. Changes in Expression of Multiple Checkpoint Molecules and Infiltration of Tumor Immune Cells after Neoadjuvant Chemotherapy in Gastric Cancer. J. Cancer 2019, 10, 2754–2763. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Valentini, A.M.; Di Pinto, F.; Coletta, S.; Guerra, V.; Armentano, R.; Caruso, M.L. Tumor microenvironment immune types in gastric cancer are associated with mismatch repair however, not HER2 status. Oncol. Lett. 2019, 18, 1775–1785. [Google Scholar] [CrossRef]
- Solomon, B.L.; Garrido-Laguna, I. Upper gastrointestinal malignancies in 2017, current perspectives and future approaches. Future Oncol. 2018, 14, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Z.; Yang, D.; Yin, K.; Chang, X. Recent Progress and Future Perspectives of Immunotherapy in Advanced Gastric Cancer. Front. Immunol. 2022, 13, 948647. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wang, H. Use of immunotherapy in the treatment of gastric cancer. Oncol. Lett. 2019, 18, 5681–5690. [Google Scholar] [CrossRef]
- Chakroborty, D.; Sarkar, C.; Mitra, R.B.; Banerjee, S.; Dasgupta, P.S.; Basu, S. Depleted dopamine in gastric cancer tissues: Dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res. 2004, 10, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Chakroborty, D.; Goswami, S.; Fan, H.; Mo, X.; Basu, S. VEGF-A controls the expression of its regulator of angiogenic functions, dopamine D2 receptor, on endothelial cells. J. Cell Sci. 2022, 135, jcs259617. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, Y.; Kong, J.C.; Sun, Y.; Tantalo, D.G.; Yeang, H.X.A.; Ying, L.; Yan, F.; Xu, D.; Halse, H.; et al. High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. Clin. Transl. Immunol. 2020, 9, e1127. [Google Scholar] [CrossRef] [PubMed]
- Derks, S.; de Klerk, L.K.; Xu, X.; Fleitas, T.; Liu, K.X.; Liu, Y.; Dietlein, F.; Margolis, C.; Chiaravalli, A.M.; Da Silva, A.C.; et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann. Oncol. 2020, 31, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O. Immune checkpoints aberrations and gastric cancer; assessment of prognostic value and evaluation of therapeutic potentials. Crit. Rev. Oncol. Hematol. 2016, 97, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Okonogi, N.; Nakano, T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int. J. Clin. Oncol. 2020, 25, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Iwatsuki, M.; Harada, K.; Eto, K.; Hiyoshi, Y.; Ishimoto, T.; Nagai, Y.; Iwagami, S.; Miyamoto, Y.; Yoshida, N.; et al. Prognostic impacts of the combined positive score and the tumor proportion score for programmed death ligand-1 expression by double immunohistochemical staining in patients with advanced gastric cancer. Gastric Cancer 2020, 23, 95–104. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, H.; Li, J.; Jiang, X.; Li, Z.; Shen, J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int. J. Biol. Macromol. 2024, 254, 127911. [Google Scholar] [CrossRef]
- Sasaki, A.; Nakamura, Y.; Togashi, Y.; Kuno, H.; Hojo, H.; Kageyama, S.; Nakamura, N.; Takashima, K.; Kadota, T.; Yoda, Y.; et al. Enhanced tumor response to radiotherapy after PD-1 blockade in metastatic gastric cancer. Gastric Cancer 2020, 23, 893–903. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Q.; Ren, T.; Xia, W.; Peng, Y.; Liu, G.L.; Luo, H.; Yang, Y.; Dai, X.Y.; Zhou, S.F.; et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des. Dev. Ther. 2015, 9, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.J.; Larkin, J.M.G. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opin. Pharmacother. 2017, 18, 1477–1490. [Google Scholar] [CrossRef]
- Bang, Y.J.; Golan, T.; Dahan, L.; Fu, S.; Moreno, V.; Park, K.; Geva, R.; De Braud, F.; Wainberg, Z.A.; Reck, M.; et al. Ramucirumab and durvalumab for previously treated, advanced non-small-cell lung cancer, gastric/gastro-oesophageal junction adenocarcinoma, or hepatocellular carcinoma: An open-label, phase Ia/b study (JVDJ). Eur. J. Cancer 2020, 137, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Paik, J. Nivolumab Plus Relatlimab: First Approval. Drugs 2022, 82, 925–931. [Google Scholar] [CrossRef]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Bendell, J.; Calvo, E.; Kim, J.W.; Ascierto, P.A.; Sharma, P.; Ott, P.A.; Peltola, K.; Jaeger, D.; Evans, J.; et al. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients with Metastatic Esophagogastric Cancer. J. Clin. Oncol. 2018, 36, 2836–2844. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Muro, K.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Moehler, M.H.; Kato, K.; Arkenau, H.-T.; Oh, D.-Y.; Tabernero, J.; Cruz-Correa, M.; Wang, H.; Xu, H.; Li, J.; Yang, S.; et al. Rationale 305, Phase 3 study of tislelizumab plus chemotherapy vs placebo plus chemotherapy as first-line treatment (1L) of advanced gastric or gastroesophageal junction adenocarcinoma (GC/GEJC). J. Clin. Oncol. 2023, 41, 286. [Google Scholar] [CrossRef]
- Bang, Y.J.; Cho, J.Y.; Kim, Y.H.; Kim, J.W.; Di Bartolomeo, M.; Ajani, J.A.; Yamaguchi, K.; Balogh, A.; Sanchez, T.; Moehler, M. Efficacy of Sequential Ipilimumab Monotherapy versus Best Supportive Care for Unresectable Locally Advanced/Metastatic Gastric or Gastroesophageal Junction Cancer. Clin. Cancer Res. 2017, 23, 5671–5678. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Lee, J.; Bang, Y.J.; Almhanna, K.; Blum-Murphy, M.; Catenacci, D.V.; Chung, H.C.; Wainberg, Z.A.; Gibson, M.K.; Lee, K.W.; et al. Safety and Efficacy of Durvalumab and Tremelimumab Alone or in Combination in Patients with Advanced Gastric and Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2020, 26, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Van Cutsem, E.; Muro, K.; Wainberg, Z.; Al-Batran, S.-E.; Hyung, W.J.; Molena, D.; Marcovitz, M.; Ruscica, D.; Robbins, S.H.; et al. MATTERHORN: Phase III study of durvalumab plus FLOT chemotherapy in resectable gastric/gastroesophageal junction cancer. Future Oncol. 2022, 18, 2465–2473. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- du Rusquec, P.; de Calbiac, O.; Robert, M.; Campone, M.; Frenel, J.S. Clinical utility of pembrolizumab in the management of advanced solid tumors: An evidence-based review on the emerging new data. Cancer Manag. Res. 2019, 11, 4297–4312. [Google Scholar] [CrossRef]
- Raimondi, A.; Palermo, F.; Prisciandaro, M.; Aglietta, M.; Antonuzzo, L.; Aprile, G.; Berardi, R.; Cardellino, G.G.; De Manzoni, G.; De Vita, F.; et al. TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers 2021, 13, 2839. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Wei, X.; Xu, N.; Shen, L.; Dai, G.; Yuan, X.; Chen, Y.; Yang, S.; Shi, J.; Hu, X.; et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol. 2019, 30, 1479–1486. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Ilson, D.H. Advances in the treatment of gastric cancer: 2020–2021. Curr. Opin. Gastroenterol. 2021, 37, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Bębnowska, D.; Grywalska, E.; Niedźwiedzka-Rystwej, P.; Sosnowska-Pasiarska, B.; Smok-Kalwat, J.; Pasiarski, M.; Góźdź, S.; Roliński, J.; Polkowski, W. CAR-T Cell Therapy—An Overview of Targets in Gastric Cancer. J. Clin. Med. 2020, 9, 1894. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Dvorkin, M.; Boku, N.; Ozguroglu, M.; Ryu, M.H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coskun, H.S.; et al. Phase III Trial of Avelumab Maintenance after First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results From JAVELIN Gastric 100. J. Clin. Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Zayac, A.; Almhanna, K. Esophageal, gastric cancer and immunotherapy: Small steps in the right direction? Transl. Gastroenterol. Hepatol. 2020, 5, 9. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Lorenzen, S.; Thuss-Patience, P.C.; Homann, N.; Schenk, M.; Lindig, U.; Heuer, V.; Kretzschmar, A.; Goekkurt, E.; Haag, G.M.; et al. A randomized, open-label, phase II/III efficacy and safety study of atezolizumab in combination with FLOT versus FLOT alone in patients with gastric cancer and adenocarcinoma of the oesophagogastric junction and high immune responsiveness: The IKF-S633/DANTE trial, a trial of AIO in collaboration with SAKK. J. Clin. Oncol. 2023, 41, TPS4177. [Google Scholar]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Nagai, Y.; Lam, L.; Greene, M.I.; Zhang, H. FOXP3 and its cofactors as targets of immunotherapies. Engineering 2019, 5, 115–121. [Google Scholar] [CrossRef]
- Hou, J.-Z.; Ye, J.C.; Pu, J.J.; Liu, H.; Ding, W.; Zheng, H.; Liu, D. Novel agents and regimens for hematological malignancies: Recent updates from 2020 ASH annual meeting. J. Hematol. Oncol. 2021, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Caruso, H.G.; Heimberger, A.B.; Cooper, L.J.N. Steering CAR T cells to distinguish friend from foe. Oncoimmunology 2019, 8, e1271857. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yu, X.; Ju, R.; Wang, Z.; Wang, Y. Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int. 2022, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Depotte, L.; Palle, J.; Rasola, C.; Broudin, C.; Afrăsânie, V.A.; Mariani, A.; Zaanan, A. New developments and standard of care in the management of advanced gastric cancer. Clin. Res. Hepatol. Gastroenterol. 2023, 48, 102245. [Google Scholar] [CrossRef]
- Gomez-Martin, C.; Plaza, J.C.; Pazo-Cid, R.; Salud, A.; Pons, F.; Fonseca, P.; Leon, A.; Alsina, M.; Visa, L.; Rivera, F.; et al. Level of HER2 gene amplification predicts response and overall survival in HER2-positive advanced gastric cancer treated with trastuzumab. J. Clin. Oncol. 2013, 31, 4445–4452. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Cui, Y.J.; Ren, Y.Y.; Zhang, H.Z. Treatment of gastric carcinoma with lymphoid stroma by immunotherapy: A case report. World J. Clin. Cases 2022, 10, 8962–8967. [Google Scholar] [CrossRef]
S. No | Clinical Trial | Drug | Phase | Disease | Target Receptor | Overall Survival | Ref. |
---|---|---|---|---|---|---|---|
1 | ATTRACTION-2 | Nivolumab vs. placebo | Phase III trial | Advanced GC/GEJC | PD-1 | Median OS (95% CI) nivolumab group was 5.26 months and placebo group was 4.14 months HR 0.63 (95% CI 0.51–0.78); p < 0.0001 | [24] |
2 | CheckMate-577 | Nivolumab as adjuvant therapy | Phase III trial | Esophageal or GEJC | PD-1 | Nivolumab group OS was 22.4 months (95% CI, 16.6 to 34.0) and placebo group OS was 11.0 months (95% CI, 8.3 to 14.3) HR 0.69 (96.4% CI, 0.56–0.86); p < 0.001 | [25] |
3 | CheckMate-649 | Nivolumab/ipilimumab vs. nivolumab vs. chemotherapy | Phase III | Advanced GC/GEJ | PD-1 | Nivolumab plus chemotherapy OS 13.1 and chemotherapy alone OS 11.1. HR 0.71(98.4% CI 0.59–0.86); p < 0.0001 | [26] |
4 | CheckMate-032 | Nivolumab and nivolumab plus ipilimumab | Phase I/II trial | Metastatic GEJC | PD-L1+ and PD-L1 and MSI | Median OS (95% CI) NIVO3 was 6.2 (3.4 to 12.4) NIVO1 + IPI3 was 6.9 (3.7 to 11.5) NIVO3 + IPI1 was 4.8 (3.0 to 8.4) | [27] |
5 | KEYNOTE-059 | Pembrolizumab | Phase II | GC/GEJC | PD-L1 | Median OS was 16.3 (1.6+ to 17.3+) months for PD-L1-positive and 6.9 (2.4 to 7.0+) months for PD-L1-negative | [28] |
6 | KEYNOTE-012 | Pembrolizumab | Phase Ib trial | Advanced GC | PD-1 | Median OS was 11.4 months (95% CI 5.7 not reached). | [29] |
7 | KEYNOTE-61 | Pembrolizumab versus paclitaxel | Phase III | Advanced GC/GEJC | PD-1 | Pembrolizumab median OS was 9.1 months (95% CI 6.2–10.7) for and paclitaxel median OS 8.3 months (95% CI 7.6–9.0) | [30] |
8 | RATIONALE-305 | Tislelizumab plus ICC and placebo plus ICC | Phase III | Advanced GC/GEJC | PD-1 | TIS + ICC median OS is 17.2 (95% CI: 0.55–0.83) vs. P + ICC median OS is 12.6 months (95% CI: 0.59–0.94) | [31] |
9 | NCT01585987 | Ipilimumab monotherapy vs. best supportive care (BSC) | Phase II | Advanced GC/GEJC | CTLA-4 | Ipilimumab monotherapy median OS was 12.7 months (95% CI, 10.5–18.9) and BSC group median OS was 12.1 months (95% CI, 9.3–not estimable), study ceased | [32] |
10 | Durvalumab alone (B) and tremelimumab alone (C) or in combination(A) | Phase Ib/II | Advanced GC/GEJC | PD-L1 and CTLA-4 | Median OS for combination (A) was 9.2 months (95% CI, 5.4–12.6 months), alone (B) median OS was 3.4 months (95% CI, 1.7–4.4 months), alone (C) median OS was 7.7 months (95% CI, 2.1–13.7 months) | [33] | |
11 | MATTERHORN | Durvalumab plus FLOT | Phase III | GC/GEJC | PD-L1 | Ongoing (until February 2025) | [34] |
12 | Ramucirumab and durvalumab | Phase Ia/b | Advanced GC/GEJC | PD-L1 | Patients showed median OS was 12.4 (95% CI, 5.5–16.9) and patients with high PD-L1 expression median OS was 14.8 months | [22] | |
13 | REGARD | Ramucirumab monotherapy vs. placebo | Phase III | Advanced GC/GEJC | VEGF and VEGFR2 | Ramucirumab median OS was 5.2 months (2.3–9.9) and median OS for placebo was 3·8 months (1.7–7.1) | [35] |
14 | RAINBOW | Ramucirumab plus paclitaxel vs. placebo plus paclitaxel | Phase III | Advanced GC/GEJC | VEGFR2 | Median OS for ramucirumab plus paclitaxel was 9.6 months (95% CI 8.5–10.8) and for placebo plus paclitaxel was 7.4 months (95% CI 6.3–8.4) | [36] |
15 | ToGA (trastuzumab for gastric cancer) | Trastuzumab plus chemotherapy vs. chemotherapy alone | Phase III | Advanced GC/GEJC | HER-2-positive | Median OS for trastuzumab plus chemotherapy 13·8 months (95% CI 12–16) compared with chemotherapy alone 11·1 months (10–13) (hazard ratio 0.74; 95% CI 0∙60–0∙9) | [5] |
S.No | Drug and Mechanism of Action | Adverse Events | Treatment-Related Effects and Deaths | Ref No |
---|---|---|---|---|
1 |
| Fatigue Diarrhea Pruritus Rash |
| [25] |
2 |
| Pruritus Diarrhea Rash Fatigue Colitis Pyrexia Pneumonia Urinary tract infection | 43% in nivolumab group showed adverse effects. 27% in placebo group adverse effects.
1% death in placebo group. | [24] |
3 | Nivolumab + chemotherapy Chemotherapy alone | Nausea Diarrhea Peripheral neuropathy Pneumonia GI toxicity GI bleeding Diarrhea Asthenia Loss of appetite Pneumonitis | 59% in nivolumab + chemotherapy group showed adverse effects. 44% in chemotherapy alone group show adverse effects.
1% deaths in chemotherapy alone group. | [26] |
4 |
| Decreased appetite. Diarrhea Fatigue Pruritus Rash |
| [27] |
5 | Pembrolizumab | Fatigue Pruritus Rash Hypothyroidism Anemia Nausea Diarrhea Arthralgia | 17.8% of pembrolizumab group showed adverse effects. | [28] |
6 | Pembrolizumab | Appetite Hypothyroidism Pruritus Arthralgia | 67% patients have treatment related adverse effects. 13% showed grade 3–4 adverse effects. | [29] |
7 | Pembrolizumab Paclitaxel | Anemia Fatigue Hepatitis Hypophysitis Pneumonitis Decreased neutrophil count Neutropenia | 14% of pembrolizumab group showed grade 3–5 adverse effects. 35% of paclitaxel group showed grade 3–5 adverse effects. | [30] |
8 | Ipilimumab BSC (best supportive care) treated | Diarrhea Fatigue Rash Colitis | 23% of ipilimumab group showed grade 3–4 adverse effects. 9% of BSC group treated showed adverse effects. | [32] |
9 | Durvalumab plus tremelimumab (Arm A) Durvalumab monotherapy (Arm B) Tremelimumab monotherapy (Arm C) Third-line patients received durvalumab plus tremelimumab (Arm D) Second- and third-line patients receiving the combination (Arm E) | Diarrhea Fatigue Decreased appetite Colitis Pruritus Rash ALT increased | Arm A—17% showed adverse effects. Arm B—4% showed adverse effects. Arm C—42% showed adverse effects. Arm D—16% showed adverse effects. Arm E—11% showed adverse effects. | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkanapally, V.; Bai, X.-F.; Basu, S. Therapeutic Immunomodulation in Gastric Cancer. Cancers 2024, 16, 560. https://doi.org/10.3390/cancers16030560
Akkanapally V, Bai X-F, Basu S. Therapeutic Immunomodulation in Gastric Cancer. Cancers. 2024; 16(3):560. https://doi.org/10.3390/cancers16030560
Chicago/Turabian StyleAkkanapally, Venu, Xue-Feng Bai, and Sujit Basu. 2024. "Therapeutic Immunomodulation in Gastric Cancer" Cancers 16, no. 3: 560. https://doi.org/10.3390/cancers16030560
APA StyleAkkanapally, V., Bai, X. -F., & Basu, S. (2024). Therapeutic Immunomodulation in Gastric Cancer. Cancers, 16(3), 560. https://doi.org/10.3390/cancers16030560