Cancer Treatment Patterns and Factors Affecting Receipt of Treatment in Older Adults: Results from the ASPREE Cancer Treatment Substudy (ACTS)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. ASPREE Cancer Adjudication
2.4. ACTS Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASPirin in Reducing Events in the Elderly | ASPREE |
ASPREE Cancer Treatment Substudy | ACTS |
Body Mass Index | BMI |
CI | Confidence Interval |
Eastern Cooperative Oncology Group | ECOG |
Epidermal growth factor receptor | EGFR |
Index of Relative Socio-economic Advantage and Disadvantage | IRSAD |
Odds Ratio | OR |
Surveillance, Epidemiology, and End Results | SEER |
United States | US |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bluethmann, S.M.; Mariotto, A.B.; Rowland, J.H. Anticipating the “Silver Tsunami”: Prevalence Trajectories and Co-Morbidity Burden among Older Cancer Survivors in the United States. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1029–1036. [Google Scholar] [CrossRef]
- Armenian, S.H.; Gibson, C.J.; Rockne, R.C.; Ness, K.K. Premature Aging in Young Cancer Survivors. Gynecol. Oncol. 2019, 111, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, L.; Coalson, J.; Mowat, F.; O’Malley, C. Factors affecting receipt of chemotherapy in women with breast cancer. Int. J. Women’s Health 2010, 2, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Shavers, V.L.; Baylin, S.B.; Belinsky, S.A.; Herman, J.G. Racial and Ethnic Disparities in the Receipt of Cancer Treatment. Gynecol. Oncol. 2002, 94, 334–357. [Google Scholar] [CrossRef] [PubMed]
- Given, B.; Given, C.W. Older adults and cancer treatment. Cancer 2008, 113, 3505–3511. [Google Scholar] [CrossRef] [PubMed]
- Sedrak, M.S.; Freedman, R.A.; Cohen, H.J.; Muss, H.B.; Jatoi, A.; Klepin, H.D.; Wildes, T.M.; Le-Rademacher, J.G.; Kimmick, G.G.; Tew, W.P.; et al. Older adult participation in cancer clinical trials: A systematic review of barriers and interventions. CA Cancer J. Clin. 2020, 71, 78–92. [Google Scholar] [CrossRef]
- Bunniran, S.; Xu, Y.; Molife, C.; Nair, R.; Zhu, Y.E.; Carter, G.C.; Sheth, S.; Hess, L.M. Treatment patterns for patients with advanced/metastatic cancers by site of care. Am. J. Manag. Care 2021, 27, e105–e113. [Google Scholar] [CrossRef] [PubMed]
- Kurosky, S.K.; Mitra, D.; Zanotti, G.; Kaye, J.A. Treatment Patterns and Outcomes of Patients with Metastatic ER+/HER-2− Breast Cancer: A Multicountry Retrospective Medical Record Review. Clin. Breast Cancer 2018, 18, e529–e538. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Murray, A.M.; Reid, C.M.; Kirpach, B.; Storey, E.; Shah, R.C.; Wolfe, R.S.; Tonkin, A.M.; et al. Baseline Characteristics of Participants in the ASPREE (ASPirin in Reducing Events in the Elderly) Study. J. Gerontol. Ser. A 2017, 72, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Study design of ASPirin in Reducing Events in the Elderly (ASPREE): A randomized, controlled trial. Contemp. Clin. Trials 2013, 36, 555–564. [CrossRef] [PubMed]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Reid, C.M.; Kirpach, B.; Wolfe, R.; Storey, E.; Shah, R.C.; Lockery, J.E.; Tonkin, A.M.; et al. Effect of Aspirin on Disability-free Survival in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Orchard, S.G.; Lockery, J.E.; Gibbs, P.; Polekhina, G.; Wolfe, R.; Zalcberg, J.; Haydon, A.; McNeil, J.J.; Nelson, M.R.; Reid, C.M.; et al. Cancer history and risk factors in healthy older people enrolling in the ASPREE clinical trial. Contemp. Clin. Trials 2020, 96, 106095. [Google Scholar] [CrossRef]
- McNeil, J.J.; Gibbs, P.; Orchard, S.G.; Lockery, J.E.; Bernstein, W.B.; Cao, Y.; Ford, L.; Haydon, A.; Kirpach, B.; Macrae, F.; et al. Effect of aspirin on cancer incidence and mortality in older adults. J. Natl. Cancer Inst. 2021, 113, 258–265. [Google Scholar] [CrossRef]
- Schnipper, L.E.; Smith, T.J.; Raghavan, D.; Blayney, D.W.; Ganz, P.A.; Mulvey, T.M.; Wollins, D.S. American Society of Clinical Oncology Identifies Five Key Opportunities to Improve Care and Reduce Costs: The Top Five List for Oncology. J. Clin. Oncol. 2012, 30, 1715–1724. [Google Scholar] [CrossRef]
- Public Health England. Chemotherapy, Radiotherapy and Surgical Tumour Resections in England; Public Health England: London, UK, 2020. [Google Scholar]
- Cancer Control Continuum | Treatment: Cancer Australia. 2017. Available online: https://ncci.canceraustralia.gov.au/treatment (accessed on 23 May 2022).
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef]
- Lang, K.; Earle, C.C.; Foster, T.; Dixon, D.; Van Gool, R.; Menzin, J. Trends in the Treatment of Acute Myeloid Leukaemia in the Elderly. Drugs Aging 2005, 22, 943–955. [Google Scholar] [CrossRef]
- Medeiros, B.C.; Satram-Hoang, S.; Hurst, D.; Hoang, K.Q.; Momin, F.; Reyes, C. Big data analysis of treatment patterns and outcomes among elderly acute myeloid leukemia patients in the United States. Ann. Hematol. 2015, 94, 1127–1138. [Google Scholar] [CrossRef] [Green Version]
- Hamlin, P.A.; Satram-Hoang, S.; Reyes, C.; Hoang, K.Q.; Guduru, S.R.; Skettino, S. Treatment Patterns and Comparative Effectiveness in Elderly Diffuse Large B-Cell Lymphoma Patients: A Surveillance, Epidemiology, and End Results-Medicare Analysis. Oncologist 2014, 19, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Merie, R.; Shafiq, J.; Soon, P.S.; Delaney, G.P. Surgical and radiotherapy patterns of care in the management of breast cancer in NSW and ACT Australia. J. Med. Imaging Radiat. Oncol. 2021, 66, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Hurria, A.; Leung, D.; Trainor, K.; Borgen, P.; Norton, L.; Hudis, C. Factors influencing treatment patterns of breast cancer patients age 75 and older. Crit. Rev. Oncol. 2003, 46, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Burt, L.M.; Shrieve, D.C.; Tward, J.D. Factors influencing prostate cancer patterns of care: An analysis of treatment variation using the SEER database. Adv. Radiat. Oncol. 2018, 3, 170–180. [Google Scholar] [CrossRef]
- Wang, L.L.; Begashaw, K.; Evans, M.; Earnest, A.; Evans, S.M.; Millar, J.L.; Murphy, D.G.; Moon, D. Patterns of care and outcomes for men diagnosed with prostate cancer in Victoria: An update. ANZ J. Surg. 2018, 88, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef]
- Beckmann, K.R.; Bennett, A.; Young, G.P.; Roder, D.M. Treatment patterns among colorectal cancer patients in South Australia: A demonstration of the utility of population-based data linkage. J. Eval. Clin. Pract. 2014, 20, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.; Goldsbury, D.E.; Karikios, D.; Yap, S.; Yap, M.L.; Egger, S.; O’Connell, D.L.; Ball, D.; Fong, K.M.; Pavlakis, N.; et al. Lung cancer treatment patterns and factors relating to systemic therapy use in Australia. Asia-Pac. J. Clin. Oncol. 2021, 18, e235–e246. [Google Scholar] [CrossRef]
- Lester, J.; Escriu, C.; Khan, S.; Hudson, E.; Mansy, T.; Conn, A.; Chan, S.; Powell, C.; Brock, J.; Conibear, J.; et al. Retrospective analysis of real-world treatment patterns and clinical outcomes in patients with advanced non-small cell lung cancer starting first-line systemic therapy in the United Kingdom. BMC Cancer 2021, 21, 515. [Google Scholar] [CrossRef]
- Majeed, U.; Manochakian, R.; Zhao, Y.; Lou, Y. Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends. J. Hematol. Oncol. 2021, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Sileni, V.C.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage IIIBRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef]
- Partridge, J.S.L.; Harari, D.; Dhesi, J.K. Frailty in the older surgical patient: A review. Age Ageing 2012, 41, 142–147. [Google Scholar] [CrossRef]
- Condoluci, A.; Mazzara, C.; Zoccoli, A.; Pezzuto, A.; Tonini, G. Impact of smoking on lung cancer treatment effectiveness: A review. Futur. Oncol. 2016, 12, 2149–2161. [Google Scholar] [CrossRef]
- Peppone, L.J.; Mustian, K.M.; Morrow, G.R.; Dozier, A.M.; Ossip, D.J.; Janelsins, M.C.; Sprod, L.K.; McIntosh, S. The Effect of Cigarette Smoking on Cancer Treatment–Related Side Effects. Oncologist 2011, 16, 1784–1792. [Google Scholar] [CrossRef]
- Hawn, M.T.; Houston, T.K.; Campagna, E.J.; Graham, L.A.; Singh, J.; Bishop, M.; Henderson, W.G. The Attributable Risk of Smoking on Surgical Complications. Ann. Surg. 2011, 254, 914–920. [Google Scholar] [CrossRef]
- Hall, W.H.; Jani, A.B.; Ryu, J.K.; Narayan, S.; Vijayakumar, S. The impact of age and comorbidity on survival outcomes and treatment patterns in prostate cancer. Prostate Cancer Prostatic Dis. 2005, 8, 22–30. [Google Scholar] [CrossRef]
- Mellemgaard, A.; Lüchtenborg, M.; Iachina, M.; Jakobsen, E.; Green, A.; Krasnik, M.; Moller, H. Role of Comorbidity on Survival after Radiotherapy and Chemotherapy for Nonsurgically Treated Lung Cancer. J. Thorac. Oncol. 2015, 10, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.; Cheung, W.Y.; Atkinson, E.; Krzyzanowska, M. Impact of Comorbidity on Chemotherapy Use and Outcomes in Solid Tumors: A Systematic Review. J. Clin. Oncol. 2011, 29, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Gerards, M.C.; van der Velden, D.L.; Baars, J.W.; Brandjes, D.P.; Hoekstra, J.B.; Vriesendorp, T.M.; Gerdes, V.E. Impact of hyperglycemia on the efficacy of chemotherapy—A systematic review of preclinical studies. Crit. Rev. Oncol. 2017, 113, 235–241. [Google Scholar] [CrossRef]
- Wang, J.; Chen, K.; Li, X.; Jin, X.; An, P.; Fang, Y.; Mu, Y. Postoperative adverse events in patients with diabetes undergoing orthopedic and general surgery. Medicine 2019, 98, e15089. [Google Scholar] [CrossRef]
- Bednarek, A.; Mykała-Cieśla, J.; Pogoda, K.; Jagiełło-Gruszfeld, A.; Kunkiel, M.; Winder, M.; Chudek, J. Limitations of Systemic Oncological Therapy in Breast Cancer Patients with Chronic Kidney Disease. J. Oncol. 2020, 2020, 7267083. [Google Scholar] [CrossRef]
- Hendren, S.; Chin, N.; Fisher, S.; Winters, P.; Griggs, J.; Mohile, S.; Fiscella, K. Patients’ Barriers to Receipt of Cancer Care, and Factors Associated with Needing More Assistance from a Patient Navigator. J. Natl. Med. Assoc. 2011, 103, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Ri, M.; Aikou, S.; Seto, Y. Obesity as a surgical risk factor. Ann. Gastroenterol. Surg. 2017, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Guida, J.L.; Ahles, T.A.; Belsky, D.; Campisi, J.; Cohen, H.J.; DeGregori, J.; Fuldner, R.; Ferrucci, L.; Gallicchio, L.; Gavrilov, L.; et al. Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. JNCI J. Natl. Cancer Inst. 2019, 111, 1245–1254. [Google Scholar] [CrossRef]
- Muhandiramge, J.; Orchard, S.; Haydon, A.; Zalcberg, J. The acceleration of ageing in older patients with cancer. J. Geriatr. Oncol. 2020, 12, 343–351. [Google Scholar] [CrossRef]
Total ASPREE Cohort n = 19,114 (% of Column) | ACTS Cohort | p Value (No Treatment vs. Treatment) | |||
---|---|---|---|---|---|
Total n = 1893 (% of Column) | No Cancer Treatment n = 324 (% of Column; % of Row) | Cancer Treatment n = 1569 (% of Row; % of Column) | |||
Age at cancer diagnosis [years; median (Q1–Q3)] | N/A | 77.3 (74.6–81.4) | 78.87 (75.1–84.0) | 77.14 (74.5–80.9) | <0.001 |
Sex | |||||
Male | 8332 (44%) | 1053 (56%) | 210 (65%, 20%) | 843 (54%, 80%) | <0.001 |
Female | 10,782 (56%) | 840 (44%) | 114 (35%, 14%) | 726 (46%, 86%) | |
Race | |||||
Non-Hispanic Caucasian | 17,449 (91%) | 1770 (94%) | 303 (93%, 17%) | 1469 (94%, 83%) | 0.359 |
Non-Hispanic Asian | 164 (1%) | 13 (1%) | 1 (<1%, 8%) | 12 (1%, 92%) | |
Non-Hispanic African American | 901 (5%) | 56 (3%) | 14 (4%, 25%) | 42 (3%, 75%) | |
Non-Hispanic Other | 111 (<1%) | 18 (1%) | 4 (1%, 22%) | 14 (1%, 78%) | |
Hispanic | 488 (3%) | 35 (2%) | 4 (1%, 11%) | 31 (2%, 89%) | |
Country | |||||
Australia | 16,703 (87%) | 1718 (91%) | 274 (85%, 16%) | 1444 (92%, 84%) | <0.001 |
United States | 2411 (13%) | 175 (9%) | 50 (15%, 29%) | 125 (8%, 71%) | |
Rurality a | |||||
Major cities | 8729 (52%) | 947 (50%) | 136 (50%, 14%) | 811 (56%, 86%) | 0.084 |
Inner regional | 5976 (36%) | 587 (31%) | 100 (37%, 17%) | 487 (34%, 83%) | |
Outer regional | 1947 (12%) | 180 (9%) | 37 (14%, 21%) | 143 (10%, 79%) | |
IRSAD percentile b | 58 (31–83) | 59 (34–85) | 60 (35–85) | 57 (30–82) | 0.088 |
Education | |||||
≤12 years of education | 10,955 (57%) | 1088 (57%) | 194 (60%, 18%) | 894 (57%, 82%) | 0.403 |
13–15 years of education | 3255 (17%) | 345 (18%) | 50 (15%, 14%) | 295 (19%, 86%) | |
≥16 years of education | 4903 (26%) | 460 (24%) | 80 (25%, 17%) | 380 (24%, 83%) | |
BMI c | |||||
Underweight (<24) | 2194 (12%) | 182 (10%) | 32 (10%, 18%) | 150 (10%, 82%) | 0.771 |
Normal weight (24–30) | 11,224 (59%) | 1150 (61%) | 201 (62%, 17%) | 949 (61%, 83%) | |
Overweight (≥30) | 5607 (30%) | 553 (29%) | 90 (28%, 16%) | 463 (30%, 84%) | |
Alcohol use | |||||
Current | 14,642 (77%) | 1492 (79%) | 251 (78%, 17%) | 1241 (79%, 83%) | 0.681 |
Former | 1136 (6%) | 125 (6%) | 25 (8%, 20%) | 100 (6%, 80%) | |
Never | 3336 (18%) | 276 (15%) | 48 (15%, 17%) | 228 (15%, 83%) | |
Smoking status | |||||
Current | 735 (4%) | 120 (6%) | 29 (9%, 23%) | 91 (6%, 77%) | 0.081 |
Former | 7799 (41%) | 850 (45%) | 147 (45%, 17%) | 703 (45%, 83%) | |
Never | 10,580 (55%) | 923 (49%) | 148 (46%, 16%) | 775 (49%, 84%) | |
Chronic disease | |||||
Chronic kidney disease | 4740 (25%) | 573 (30%) | 98 (32%, 17%) | 475 (32%, 83%) | 1.000 |
Diabetes | 2045 (11%) | 242 (13%) | 65 (20%, 27%) | 177 (11%, 73%) | <0.001 |
Dyslipidaemia | 12,467 (65%) | 1195 (63%) | 200 (61%, 17%) | 995 (63%, 83%) | 0.522 |
Hypertension | 14,195 (74%) | 1437 (76%) | 252 (77%, 18%) | 1185 (76%, 82%) | 0.542 |
Frailty d | |||||
Not frail | 11,246 (59%) | 1066 (56%) | 163 (50%, 15%) | 903 (58%, 85%) | 0.033 |
Pre-frailty | 7447 (39%) | 779 (41%) | 149 (46%, 19%) | 630 (40%, 81%) | |
Frailty | 421 (2%) | 48 (3%) | 12 (4%, 25%) | 36 (2%, 75%) | |
Polypharmacy | 5088 (27%) | 506 (27%) | 101 (31%, 20%) | 405 (26%, 80%) | 0.064 |
Aspirin intervention | 9589 (50%) | 930 (49%) | 163 (50%, 18%) | 767 (49%, 82%) | 0.760 |
Cancer Treatment Cohort (n = 1893) | |
---|---|
No cancer treatment a | 324 (17%) |
Any cancer treatment a | 1569 (83%) |
Systemic therapy | 869 (46%) |
Cytotoxic chemotherapy | 537 (28%) |
Hormonal therapy | 351 (19%) |
Targeted therapy | 85 (5%) |
Immunotherapy | 31 (2%) |
Radiation therapy | 544 (29%) |
Surgery | 1029 (54%) |
Regional therapy | 16 (1%) |
Combination therapyb | |
Systemic therapy and surgery | 435 (28%) |
Systemic therapy and radiation therapy | 368 (23%) |
Radiation therapy and surgery | 266 (17%) |
Radiation therapy, systemic therapy, and surgery | 188 (12%) |
Number of major treatment modalities b,c | |
Only one modality | 868 (55%) |
Two modalities | 505 (36%) |
Three modalities | 188 (12%) |
Number of types of systemic therapy d | |
Only one type | 741 (85%) |
Two types | 121 (14%) |
Three or more types | 7 (1%) |
Systemic Therapy | ||||||||
---|---|---|---|---|---|---|---|---|
Any Treatment(n = 1569) | Any Systemic Therapy (n = 869) | Chemotherapy (n = 537) | Hormonal Therapy (n = 351) | Targeted Therapy (n = 85) | Immuno-Therapy (n = 31) | Radiation Therapy (n = 544) | Surgery (n = 1029) | |
Non-metastatic solid tumours (n = 937) | ||||||||
Breast (n = 214) | 210 (98%) | 171 (80%) | 49 (23%) | 149 (70%) | 13 (6%) | - | 104 (49%) | 206 (96%) |
Colon/rectum (n = 210) | 191 (91%) | 71 (34%) | 71 (34%) | - | 4 (2%) | - | 20 (10%) | 187 (89%) |
Lung (n = 78) | 65 (83%) | 20 (26%) | 18 (23%) | - | 1 (1%) | 2 (3%) | 33 (42%) | 38 (49%) |
Melanoma (n = 160) | 151 (94%) | 5 (3%) | - | - | - | 5 (3%) | 5 (3%) | 146 (91%) |
Prostate (n = 275) | 191 (69%) | 98 (36%) | 5 (2%) | 96 (35%) | - | - | 106 (39%) | 83 (30%) |
Metastatic solid tumours (n = 297) | ||||||||
Breast (n = 32) | 28 (88%) | 26 (81%) | 10 (31%) | 20 (63%) | 4 (13%) | - | 15 (47%) | 8 (25%) |
Colon/rectum (n = 57) | 50 (88%) | 42 (74%) | 42 (74%) | - | 20 (35%) | - | 11 (19%) | 35 (61%) |
Lung (n = 78) | 59 (76%) | 39 (50%) | 36 (46%) | - | 6 (8%) | 6 (8%) | 40 (51%) | 15 (19%) |
Melanoma (n = 30) | 23 (77%) | 15 (50%) | 2 (7%) | - | 5 (17%) | 11 (37%) | 10 (33%) | 16 (53%) |
Prostate (n = 100) | 88 (88%) | 86 (86%) | 25 (25%) | 83 (86%) | - | - | 35 (35%) | 18 (18%) |
Haematological cancers (n = 187) | 112 (60%) | 102 (55%) | 97 (52%) | - | 19 (10%) | 2 (1%) | 16 (9%) | 10 (5%) |
Age | ||||||||
65–69 (n = 33) | 22 (67%) | 12 (36%) | 8 (24%) | 3 (9%) | 1 (3%) | - | 2 (6%) | 16 (48%) |
70–75 (n = 992) | 839 (85%) | 472 (48%) | 300 (30%) | 190 (19%) | 46 (5%) | 16 (2%) | 301 (30%) | 586 (59%) |
76–80 (n = 544) | 444 (82%) | 252 (46%) | 157 (29%) | 101 (19%) | 25 (5%) | 12 (2%) | 159 (29%) | 278 (51%) |
81–85 (n = 272) | 201 (74%) | 102 (38%) | 58 (21%) | 41 (15%) | 10 (4%) | 3 (1%) | 64 (24%) | 118 (43%) |
85+ (n = 92) | 63 (68%) | 31 (34%) | 14 (15%) | 16 (17%) | 3 (3%) | - | 18 (20%) | 31 (34%) |
Time from cancer diagnosis to death | ||||||||
<30 days (n = 84) | 28 (33%) | 13 (15%) | 10 (12%) | 4 (5%) | - | - | 6 (7%) | 14 (17%) |
30–89 days (n = 82) | 51 (62%) | 24 (29%) | 20 (24%) | 2 (2%) | 5 (6%) | 1 (1%) | 22 (27%) | 14 (17%) |
90–365 days (n = 193) | 158 (82%) | 104 (54%) | 91 (47%) | 9 (5%) | 10 (5%) | 3 (2%) | 68 (35%) | 75 (39%) |
1–3 years (n = 143) | 126 (88%) | 100 (70%) | 88 (62%) | 15 (10%) | 19 (13%) | 5 (3%) | 56 (39%) | 70 (49%) |
3+ years (n = 44) | 37 (84%) | 24 (55%) | 15 (34%) | 12 (27%) | 2 (5%) | 2 (5%) | 12 (27%) | 20 (45%) |
Cause of death | ||||||||
Cancer-related (n = 498) | 367 (74%) | 244 (49%) | 208 (42%) | 35 (7%) | 35 (7%) | 11 (2%) | 156 (31%) | 176 (35%) |
Cardiovascular (n = 17) | 11 (65%) | 8 (47%) | 6 (35%) | 3 (18%) | - | - | 3 (18%) | 4 (24%) |
Major haemorrhage (n = 6) | 5 (83%) | 3 (50%) | 2 (33%) | 2 (33%) | 1 (17%) | - | 1 (17%) | 2 (33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhandiramge, J.; Warner, E.T.; Zalcberg, J.R.; Haydon, A.; Polekhina, G.; van Londen, G.J.; Gibbs, P.; Bernstein, W.B.; Tie, J.; Millar, J.L.; et al. Cancer Treatment Patterns and Factors Affecting Receipt of Treatment in Older Adults: Results from the ASPREE Cancer Treatment Substudy (ACTS). Cancers 2023, 15, 1017. https://doi.org/10.3390/cancers15041017
Muhandiramge J, Warner ET, Zalcberg JR, Haydon A, Polekhina G, van Londen GJ, Gibbs P, Bernstein WB, Tie J, Millar JL, et al. Cancer Treatment Patterns and Factors Affecting Receipt of Treatment in Older Adults: Results from the ASPREE Cancer Treatment Substudy (ACTS). Cancers. 2023; 15(4):1017. https://doi.org/10.3390/cancers15041017
Chicago/Turabian StyleMuhandiramge, Jaidyn, Erica T. Warner, John R. Zalcberg, Andrew Haydon, Galina Polekhina, Gijsberta J. van Londen, Peter Gibbs, Wendy B. Bernstein, Jeanne Tie, Jeremy L. Millar, and et al. 2023. "Cancer Treatment Patterns and Factors Affecting Receipt of Treatment in Older Adults: Results from the ASPREE Cancer Treatment Substudy (ACTS)" Cancers 15, no. 4: 1017. https://doi.org/10.3390/cancers15041017