Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,405)

Search Parameters:
Keywords = radiation therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

15 pages, 614 KiB  
Article
Multi-Institutional Comparison of Ablative 5-Fraction Magnetic Resonance-Guided Online Adaptive Versus 15/25-Fraction Computed Tomography-Guided Moderately Hypofractionated Offline Adapted Radiation Therapy for Locally Advanced Pancreatic Cancer
by Michael D. Chuong, Eileen M. O’Reilly, Robert A. Herrera, Melissa Zinovoy, Kathryn E. Mittauer, Muni Rubens, Adeel Kaiser, Paul B. Romesser, Nema Bassiri-Gharb, Abraham J. Wu, John J. Cuaron, Alonso N. Gutierrez, Carla Hajj, Antonio Ucar, Fernando DeZarraga, Santiago Aparo, Christopher H. Crane and Marsha Reyngold
Cancers 2025, 17(15), 2596; https://doi.org/10.3390/cancers17152596 - 7 Aug 2025
Abstract
Background: Radiation dose escalation for locally advanced pancreatic cancer (LAPC) using stereotactic magnetic resonance (MR)-guided online adaptive radiation therapy (SMART) or computed tomography (CT)-guided moderately hypofractionated ablative radiation therapy (HART) can achieve favorable outcomes although have not previously been compared. Methods: We performed [...] Read more.
Background: Radiation dose escalation for locally advanced pancreatic cancer (LAPC) using stereotactic magnetic resonance (MR)-guided online adaptive radiation therapy (SMART) or computed tomography (CT)-guided moderately hypofractionated ablative radiation therapy (HART) can achieve favorable outcomes although have not previously been compared. Methods: We performed a multi-center retrospective analysis of SMART (50 Gy/5 fractions) vs. HART (75 Gy/25 fractions or 67.5 Gy/15 fractions with concurrent capecitabine) for LAPC. Gray’s test and Cox proportional regression analyses were performed to identify factors associated with local failure (LF) and overall survival (OS). Results: A total of 211 patients (SMART, n = 91; HART, n = 120) were evaluated, and none had surgery. Median follow-up after SMART and HART was 27.0 and 40.0 months, respectively (p < 0.0002). SMART achieved higher gross tumor volume (GTV) coverage and greater hotspots. Two-year LF after SMART and HART was 6.5% and 32.9% (p < 0.001), while two-year OS was 31.0% vs. 35.3% (p = 0.056), respectively. LF was associated with SMART vs. HART (HR 5.389, 95% CI: 1.298–21.975; p = 0.021) and induction mFOLFIRINOX vs. non-mFOLFIRINOX (HR 2.067, 95% CI 1.038–4.052; p = 0.047), while OS was associated with CA19-9 decrease > 40% (HR 0.725, 95% CI 0.515–0.996; p = 0.046) and GTV V120% (HR 1.022, 95% CI 1.006–1.037; p = 0.015). Acute grade > 3 toxicity was similar (3.3% vs. 5.8%; p = 0.390), while late grade > 3 toxicity was less common after SMART (2.2% vs. 9.2%; p = 0.037). Conclusions: Ablative SMART and HART both achieve favorable oncologic outcomes for LAPC with minimal toxicity. We did not observe an OS difference, although technical advantages of SMART might improve target coverage and reduce LF. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 2095 KiB  
Review
Exploiting TCR Repertoire Analysis to Select Therapeutic TCRs for Cancer Immunotherapy
by Ursule M. Demaël, Thunchanok Rirkkrai, Fatma Zehra Okus, Andreas Tiffeau-Mayer and Hans J. Stauss
Cells 2025, 14(15), 1223; https://doi.org/10.3390/cells14151223 - 7 Aug 2025
Abstract
Over the past decade, numerous innovative immunotherapy strategies have transformed the treatment of cancer and improved the survival of patients unresponsive to conventional chemotherapy and radiation therapy. Immune checkpoint inhibition approaches aim to block negative regulatory pathways that limit the function of endogenous [...] Read more.
Over the past decade, numerous innovative immunotherapy strategies have transformed the treatment of cancer and improved the survival of patients unresponsive to conventional chemotherapy and radiation therapy. Immune checkpoint inhibition approaches aim to block negative regulatory pathways that limit the function of endogenous T cells, while adoptive cell therapy produces therapeutic T cells with high functionality and defined cancer specificity. While CAR engineering successfully targets cancer surface antigens, TCR engineering enables targeting of the entire cancer proteome, including mutated neo-antigens. To date, TCR engineering strategies have focused on the identification of target cancer antigens recognised by well-characterised therapeutic TCRs. In this review, we explore whether antigen-focused approaches could be complemented by TCR-focused approaches, whereby information of the TCR repertoire of individual patients provides the basis for selecting TCRs to engineer autologous T cells for adoptive cell therapy. We discuss how TCR clonality profiles, distribution in T cell subsets, and bioinformatic screening against continuously improving TCR databases can guide the selection of TCRs for therapeutic application. We further outline in vitro approaches to prioritise TCR candidates to confirm cancer reactivity and exclude recognition of healthy autologous cells, which could provide validation for their therapeutic use even when the target antigen remains unknown. Full article
Show Figures

Figure 1

25 pages, 1045 KiB  
Review
A Review on the Evolving Role of Radiation Therapy in the Treatment of Locally Advanced Rectal Cancer
by Zeinab Dandash, Tala Mobayed, Sally Temraz, Ali Shamseddine, Samer Doughan, Samer Deeba, Zeina Ayoub, Toufic Eid, Bassem Youssef and Lara Hilal
Curr. Oncol. 2025, 32(8), 443; https://doi.org/10.3390/curroncol32080443 - 7 Aug 2025
Abstract
Treatment of locally advanced rectal cancer (LARC), clinical stages II–III, typically involves multimodal treatment options. Over the past decade, the role of radiation therapy as a neoadjuvant treatment for LARC has evolved and is currently a part of total neoadjuvant therapy (TNT). Some [...] Read more.
Treatment of locally advanced rectal cancer (LARC), clinical stages II–III, typically involves multimodal treatment options. Over the past decade, the role of radiation therapy as a neoadjuvant treatment for LARC has evolved and is currently a part of total neoadjuvant therapy (TNT). Some recently published studies advocate for the omission of radiation therapy entirely, while others report on a non-operative approach that emphasizes the use of higher radiation therapy doses. This review aims to evaluate the latest literature on the current role of radiation therapy in the management of LARC, with a discussion of how to best select the most appropriate treatment protocol based on individual patient and tumor characteristics, comorbidities, and personal needs and preferences. Full article
Show Figures

Graphical abstract

19 pages, 13597 KiB  
Systematic Review
Current Research Trends and Hotspots in Radiotherapy Combined with Nanomaterials for Cancer Treatment: A Bibliometric and Visualization Analysis
by Muyasha Abulimiti, Shiqin Dai, Ebara Mitsuhiro, Yu Sugawara, Yinuo Li, Hideyuki Sakurai and Yoshitaka Matsumoto
Nanomaterials 2025, 15(15), 1205; https://doi.org/10.3390/nano15151205 - 6 Aug 2025
Abstract
This study investigated the evolving trends, current research hotspots, and future directions of radiotherapy combined with nanobiomaterials through a bibliometric analysis. Publications related to nanobiomaterials used in radiotherapy between 2004 and 2024 were retrieved from the Web of Science Core Collection database and [...] Read more.
This study investigated the evolving trends, current research hotspots, and future directions of radiotherapy combined with nanobiomaterials through a bibliometric analysis. Publications related to nanobiomaterials used in radiotherapy between 2004 and 2024 were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, R, and CiteSpace. China emerged as the leading contributor, accounting for 1051 publications (50.41%), followed by the USA. Liu Zhuang is the most productive author in this field. American Chemical Society (ACS) Nano published the most influential articles and accumulated the highest number of citations. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy was the most cited, with 1255 citations. Citation bursts have revealed emerging research trends in targeted delivery, cellular studies, co-delivery strategies, immunogenic cell death, polymeric nanoparticles, tumor research, and drug delivery systems, indicating potential avenues for future research. Over the past two decades, nanomaterials for radiotherapy have gained substantial attention. Key areas of focus include enhancing the efficacy of radiotherapy, achieving targeted drug delivery, minimizing adverse effects, and integrating nanomaterials with other therapeutic modalities. Future investigations are expected to improve the precision of radiotherapy, augment radiation effects, and optimize the tumor microenvironment. Full article
Show Figures

Figure 1

16 pages, 2413 KiB  
Article
The Effect of Cannabidiol in Conjunction with Radiation Therapy on Canine Glioma Cell Line Transplanted in Immunodeficient Mice
by Masayasu Ukai, Jade Kurihara, Markos Antonakakis, Krista Banks, Steve Dow, Daniel L. Gustafson, Mary-Keara Boss, Amber Prebble and Stephanie McGrath
Vet. Sci. 2025, 12(8), 735; https://doi.org/10.3390/vetsci12080735 - 5 Aug 2025
Abstract
Glioma is a type of neoplasia that spontaneously arises from the glial cells of the brain in humans and dogs, and its prognosis is grave. Current treatment options for glioma include surgery, radiation therapy, chemotherapy, or symptomatic treatment. Evidence has shown that cannabidiol [...] Read more.
Glioma is a type of neoplasia that spontaneously arises from the glial cells of the brain in humans and dogs, and its prognosis is grave. Current treatment options for glioma include surgery, radiation therapy, chemotherapy, or symptomatic treatment. Evidence has shown that cannabidiol (CBD) may have anticancer, anti-angiogenic, and anti-inflammatory properties in both in vitro and in vivo studies. In this in vivo murine experiment, the canine glioma cell line J3TBG was injected into the frontoparietal cortex of immunodeficient mice using xenogeneic tissue transplantation. A total of 20 mice were randomly assigned to one of four treatment groups—Control group (C), CBD group (CBD), Radiation Therapy group (RT), and CBD plus Radiation Therapy group (CBD + RT). After transplantation of J3TBG, a single fraction of 5.5 Gy RT was administered to the RT and CBD + RT groups, and CBD was administered daily to the CBD and CBD + RT groups. Necropsies were performed to collect blood and brain tissue. Although there was not a statistically significant difference, the survival time among mice were longer in the CBD + RT group than the RT group. These results indicate that CBD may be used as an adjunctive therapy to enhance RT treatment. Larger cohort studies are required to substantiate the hypothesis. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

20 pages, 6034 KiB  
Article
Pexidartinib and Nintedanib Combination Therapy Targets Macrophage Polarization to Reverse Pulmonary Fibrosis: A Preclinical Study
by Ji-Hee Kim, Jae-Kyung Nam, Min-Sik Park, Seungyoul Seo, Hyung Chul Ryu, Hae-June Lee, Jeeyong Lee and Yoon-Jin Lee
Int. J. Mol. Sci. 2025, 26(15), 7570; https://doi.org/10.3390/ijms26157570 - 5 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This study determined the efficacy of nintedanib and pexidartinib (PLX3397) combination therapy for treating IPF. Combination treatment effectively inhibited the progression of radiation-induced pulmonary fibrosis (RIPF) and prolonged survival in bleomycin-treated mice. Micro-CT analysis revealed a significant tissue repair efficacy. The therapy significantly normalized the abnormal vascular structure observed during RIPF and bleomycin-induced pulmonary fibrosis progression and was accompanied by a decrease in the M2 population. Polarized M1 macrophages enhanced normalized tube formation of irradiated endothelial cells (ECs) in vitro; M2 macrophages increased adhesion in irradiated ECs and abnormal tube formation. Single-cell RNA sequencing data from patients with IPF further supports colony stimulating factor (CSF) 1 upregulation in macrophages and downregulation of capillary EC markers. This study highlights a promising combination strategy to overcome the therapeutic limitations of monotherapy with nintedanib for the treatment of IPF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

28 pages, 974 KiB  
Review
Murburn Bioenergetics and “Origins–Sustenance–Termination–Evolution of Life”: Emergence of Intelligence from a Network of Molecules, Unbound Ions, Radicals and Radiations
by Laurent Jaeken and Kelath Murali Manoj
Int. J. Mol. Sci. 2025, 26(15), 7542; https://doi.org/10.3390/ijms26157542 - 5 Aug 2025
Viewed by 255
Abstract
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge s [...] Read more.
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge separation (ECS) and formation/recruitment of diffusible reactive species (DRS, like radicals whose reactions enable ATP-synthesis and thermogenesis) and emission of radiations (UV/Vis to ELF). These processes also lead to a chemo-electromagnetic matrix (CEM), ascertaining that living cell/organism react/function as a coherent unit. Murburn concept propounds the true utility of oxygen: generating DRS (with catalytic and electrical properties) on the way to becoming water, the life solvent, and ultimately also leading to phase-based macroscopic homeostatic outcomes. Such a layout enables cells to become simple chemical engines (SCEs) with powering, coherence, homeostasis, electro-mechanical and sensing–response (PCHEMS; life’s short-term “intelligence”) abilities. In the current review, we discuss the coacervate nature of cells and dwell upon the ways and contexts in which various radiations (either incident or endogenously generated) could interact in the new scheme of cellular function. Presenting comparative evidence/arguments and listing of systems with murburn models, we argue that the new perceptions explain life processes better and urge the community to urgently adopt murburn bioenergetics and adapt to its views. Further, we touch upon some distinct scientific and sociological contexts with respect to the outreach of murburn concept. It is envisaged that greater awareness of murburn could enhance the longevity and quality of life and afford better approaches to therapies. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

14 pages, 1282 KiB  
Systematic Review
Actinic Cheilitis: A Systematic Review and Meta-Analysis of Interventions, Treatment Outcomes, and Adverse Events
by Matthäus Al-Fartwsi, Anne Petzold, Theresa Steeb, Lina Amin Djawher, Anja Wessely, Anett Leppert, Carola Berking and Markus V. Heppt
Biomedicines 2025, 13(8), 1896; https://doi.org/10.3390/biomedicines13081896 - 4 Aug 2025
Viewed by 259
Abstract
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. [...] Read more.
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. Materials and Methods: A pre-defined protocol was registered in PROSPERO (CRD42021225182). Systematic searches in Medline, Embase, and Central, along with manual trial register searches, identified studies reporting participant clearance rates (PCR) or recurrence rates (PRR). Quality assessment for randomized controlled trials (RCTs) was conducted using the Cochrane Risk of Bias tool 2. Uncontrolled studies were evaluated using the tool developed by the National Heart, Lung, and Blood Institute. The generalized linear mixed model was used to pool proportions for uncontrolled studies. A pairwise meta-analysis for RCTs was applied, using the odds ratio (OR) as the effect estimate and the GRADE approach to evaluate the quality of the evidence. Adverse events were analyzed qualitatively. Results: A comprehensive inclusion of 36 studies facilitated an evaluation of 614 participants for PCR, and 430 patients for PRR. Diclofenac showed the lowest PCR (0.53, 95% confidence interval (CI) [0.41; 0.66]), while CO2 laser showed the highest PCR (0.97, 95% CI [0.90; 0.99]). For PRR, Er:YAG laser showed the highest rates (0.14, 95% CI [0.08; 0.21]), and imiquimod the lowest (0.00, 95% CI [0.00; 0.06]). In a pairwise meta-analysis, the OR indicated a lower recurrence rate for Er:YAG ablative fractional laser (AFL)-primed methyl-aminolevulinate photodynamic therapy (MAL-PDT) (Er:YAG AFL-PDT) compared to methyl-aminolevulinate photodynamic therapy (MAL-PDT) alone (OR = 0.22, 95% CI [0.06; 0.82]). The CO2 laser showed fewer local side effects than the Er:YAG laser, while PDTs caused more skin reactions. Due to qualitative data, comparability was limited, highlighting the need for individualized treatment. Conclusions: This study provides a complete and up-to-date evidence synthesis of practice-relevant interventions for AC, identifying the CO2 laser as the most effective treatment and regarding PCR and imiquimod as most effective concerning PRR. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Figure 1

16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 - 4 Aug 2025
Viewed by 216
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

10 pages, 615 KiB  
Article
Translating SGRT from Breast to Lung Cancer: A Study on Frameless Immobilization and Real-Time Monitoring Efficacy, Focusing on Setup Accuracy
by Jang Bo Shim, Hakyoung Kim, Sun Myung Kim and Dae Sik Yang
Life 2025, 15(8), 1234; https://doi.org/10.3390/life15081234 - 4 Aug 2025
Viewed by 156
Abstract
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and [...] Read more.
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions. Materials and Methods: A total of 204 treatment records from 17 patients with primary lung cancer who underwent radiotherapy at Korea University Guro Hospital between October 2024 and April 2025 were retrospectively analyzed. Patients were initially positioned using the Identify system (Varian) in the CT suite, with surface data transferred to the treatment room system. Alignment was performed to within ±1 cm and ±2° across six degrees of freedom. Cone-beam CT (CBCT) was acquired prior to treatment for verification, and treatment commenced when the Distance to Correspondence Surface (DCS) was ≤0.90. Setup deviations from the Identify system were recorded and compared with CBCT in three translational axes to evaluate positioning accuracy and PTV displacement. Results and Conclusions: The Identify system was shown to provide high setup accuracy and reliable real-time motion monitoring in lung cancer radiotherapy. Its ability to detect patient movement and automatically interrupt beam delivery contributes to enhanced treatment safety and precision. In addition, even though the maximum longitudinal (Lng) shift reached up to −1.83 cm with surface-guided setup, and up to 1.78 cm (Lat) 5.26 cm (Lng), 9.16 cm (Vrt) with CBCT-based verification, the use of Identify’s auto-interruption mode (±1 cm in translational axes, ±2° in rotational axes) allowed treatment delivery with PTV motion constrained within ±0.02 cm. These results suggest that, due to significant motion in the longitudinal direction, appropriate PTV margins should be considered during treatment planning. The Identify system enhances setup accuracy in lung cancer patients using a surface-guided approach and enables real-time tracking of intra-fractional errors. SGRT, when implemented with systems such as Identify, shows promise as a feasible alternative or complement to conventional IGRT in selected lung cancer cases. Further studies with larger patient cohorts and diverse clinical settings are warranted to validate these findings. Full article
(This article belongs to the Special Issue Current Advances in Lung Cancer Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 19662 KiB  
Review
Partial Cystectomy for Muscle-Invasive Bladder Cancer
by Peter S. Palencia, Nethusan Sivanesan, Syed Rahman, Fady Ghali, David Hesse, John Colberg, Ashwin Sridhar, John D. Kelly, Byron H. Lee, Ashish M. Kamat and Wei-Shen Tan
Cancers 2025, 17(15), 2562; https://doi.org/10.3390/cancers17152562 - 3 Aug 2025
Viewed by 308
Abstract
Partial cystectomy is a surgical bladder-sparing option for selected patients with muscle-invasive bladder cancer (MIBC), urachal adenocarcinoma and diverticular bladder tumors. Partial cystectomy hold several advantages. It allows for definite pathology and accurate staging while avoiding side effects from radiation therapy and preserves [...] Read more.
Partial cystectomy is a surgical bladder-sparing option for selected patients with muscle-invasive bladder cancer (MIBC), urachal adenocarcinoma and diverticular bladder tumors. Partial cystectomy hold several advantages. It allows for definite pathology and accurate staging while avoiding side effects from radiation therapy and preserves the option for salvage radical therapy (radical cystectomy or radical radiotherapy). Patients should have a CT urogram, prostatic urethral biopsy and mapping biopsies or blue light cystoscopy to rule out multifocal disease or CIS. Small solitary MIBC patients without carcinoma in situ in an area of the bladder where resection can be performed with negative margin would be the ideal candidates for partial cystectomy. Neoadjuvant systemic therapy is recommended for patients undergoing partial cystectomy. Partial cystectomy can be performed either by open or robotic approaches. When compared to radical cystectomy, partial cystectomy affords a lower complication rate and length of stay and better quality of life. Recurrence-free survival, cancer-specific survival and overall survival at 5 years is 39–67%, 62–84% and 45–70%, respectively. Following partial cystectomy, patients should have three monthly cystoscopy and urinary cytology for the first 24 months followed by 6-monthly cystoscopy for year 3 and 4 and then yearly for life. Cross-sectional imaging should be performed every 3–6 months for the first 2–3 years and then annually for 5 years. Full article
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 - 1 Aug 2025
Viewed by 741
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

10 pages, 404 KiB  
Case Report
Endometriosis as a Differential Diagnosis in a 17-Year-Old Patient with Low Back and Radicular Pain: A Case Report
by Miryam Vergara, Daniele Ceron, Gloria Giglioni, Gabriella Di Crescenzo and Elisa Burani
Women 2025, 5(3), 28; https://doi.org/10.3390/women5030028 - 1 Aug 2025
Viewed by 221
Abstract
Endometriosis is a benign and often underdiagnosed condition that affects women of reproductive age, typically between 18 and 45 years. It can cause infertility and pain, including radicular pain and low back pain (LBP). The aim of this case report is to emphasize [...] Read more.
Endometriosis is a benign and often underdiagnosed condition that affects women of reproductive age, typically between 18 and 45 years. It can cause infertility and pain, including radicular pain and low back pain (LBP). The aim of this case report is to emphasize the importance of making a differential diagnosis when facing LBP and radicular symptoms. We report the case of a 17-year-old female patient, R.A., presented with a significant LBP (NPRS 8/10) radiating from her lumbar spine to her right buttock and occasionally to both legs, accompanied by weakness. She revealed exacerbation of pain during menstruation, despite being under hormonal contraceptive treatment. After three physiotherapy sessions that included education, manual therapy and exercise, the patient’s pain persisted so her physiotherapist recommended an evaluation in the emergency department, where standard radiography did not reveal any significant findings. Physiotherapy continued until the fifth session, when the patient agreed to undergo evaluation at a specialized endometriosis centre. Further investigations revealed endometriotic tissue on the uterosacral ligament, leading to hormonal therapy adjustment, with which pain gradually decreased to a manageable level (NPRS 2/10). This case report highlights the importance of an early differential diagnosis in patients with LBP, as endometriosis can present not only in older women but also in younger patients, including those already on oral contraceptives. Therefore, to mitigate the risk of pattern recognition bias, clinicians must maintain a high index of suspicion for endometriosis, even in atypical or unlikely clinical presentations. Full article
Show Figures

Figure 1

11 pages, 2015 KiB  
Article
Risk Factors for Radiation-Induced Keratoconjunctivitis Sicca in Dogs Treated with Hypofractionated Intensity-Modulated Radiation Therapy for Intranasal Tumors
by Akihiro Ohnishi, Soichirou Takeda, Yoshiki Okada, Manami Tokoro, Saki Kageyama, Yoshiki Itoh and Taketoshi Asanuma
Animals 2025, 15(15), 2258; https://doi.org/10.3390/ani15152258 - 1 Aug 2025
Viewed by 159
Abstract
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients [...] Read more.
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients treated with IMRT delivered in 4–6 weekly fractions of 8 Gy. Orbital structures were retrospectively contoured, and dose–volume metrics (D50) were calculated. Receiver operating characteristic (ROC) curve analysis and odds ratios were used to evaluate the associations between radiation dose and KCS development. Six dogs (33%) developed KCS within three months post-treatment. Statistically significant dose differences were observed between affected and unaffected eyes for the eyeball, cornea, and retina. ROC analyses identified dose thresholds predictive of KCS: 13.8 Gy (eyeball), 14.9 Gy (cornea), and 17.0 Gy (retina), with the retina showing the highest odds ratio (28.33). To ensure clinical relevance, KCS was diagnosed based on decreased tear production combined with corneal damage to ensure clinical relevance. This study proposes dose thresholds for ocular structures that may guide treatment planning and reduce the risk of KCS in canine patients undergoing IMRT. Further prospective studies are warranted to validate these thresholds and explore mitigation strategies for high-risk cases. Full article
(This article belongs to the Special Issue Imaging Techniques and Radiation Therapy in Veterinary Medicine)
Show Figures

Graphical abstract

Back to TopTop