Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes
Conflicts of Interest
References
- Ames, B.N. Mutagenesis and carcinogenesis: Endogenous and exogenous factors. Environ. Mol. Mutagen. 1989, 14 (Suppl. S16), 66–77. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, S.; Advani, D.; Khosla, A.; Kumar, P.; Ambasta, R.K. Unboxing the molecular modalities of mutagens in cancer. Environ. Sci. Pollut. Res. Int. 2022, 29, 62111–62159. [Google Scholar] [CrossRef] [PubMed]
- Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 2020, 52, 1139–1143. [Google Scholar] [CrossRef]
- Salk, J.J.; Kennedy, S.R. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. Environ. Mol. Mutagen. 2020, 61, 135–151. [Google Scholar] [CrossRef]
- Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015, 149, 1204–1225. [Google Scholar] [CrossRef]
- Sawan, C.; Vaissière, T.; Murr, R.; Herceg, Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat. Res. 2008, 642, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F.; Lopomo, A.; Spisni, R.; Migliore, L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J. Gastroenterol. 2014, 20, 943–956. [Google Scholar] [CrossRef]
- Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019, 10, 1150. [Google Scholar] [CrossRef]
- Yu, J.; Xie, T.; Wang, Z.; Wang, X.; Zeng, S.; Kang, Y.; Hou, T. DNA methyltransferases: Emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug. Discov. Today 2019, 24, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Burgio, E.; Piscitelli, P.; Colao, A. Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. Int. J. Environ. Res. Public Health 2018, 15, 1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lønning, P.E.; Eikesdal, H.P.; Løes, I.M.; Knappskog, S. Constitutional Mosaic Epimutations—A hidden cause of cancer? Cell Stress 2019, 3, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Lønning, P.E.; Nikolaienko, O.; Pan, K.; Kurian, A.W.; Eikesdal, H.P.; Pettinger, M.; Anderson, G.L.; Prentice, R.L.; Chlebowski, R.T.; Knappskog, S. Constitutional BRCA1 Methylation and Risk of Incident Triple-Negative Breast Cancer and High-grade Serous Ovarian Cancer. JAMA Oncol. 2022, 8, 1579–1587. [Google Scholar] [CrossRef]
- Ruiz de la Cruz, M.; de la Cruz Montoya, A.H.; Rojas Jiménez, E.A.; Martínez Gregorio, H.; Díaz Velásquez, C.E.; Paredes de la Vega, J.; de la Cruz Hernández-Hernández, F.; Vaca Paniagua, F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers 2021, 13, 4807. [Google Scholar] [CrossRef]
- Hoang, P.H.; Landi, M.T. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers 2022, 14, 961. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, Y.; Breitling, L.P.; Brenner, H. Tobacco smoking and methylation of genes related to lung cancer development. Oncotarget 2016, 7, 59017–59028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Elgizouli, M.; Schöttker, B.; Holleczek, B.; Nieters, A.; Brenner, H. Smoking-associated DNA methylation markers predict lung cancer incidence. Clin. Epigenet. 2016, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, S.; Joehanes, R.; Joubert, B.R.; Xu, C.J.; Vives-Usano, M.; Rezwan, F.I.; Felix, J.F.; Ward, J.M.; Guan, W.; Richmond, R.C.; et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 2019, 11, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, K.K.; Schnohr, P.; Jensen, G.B.; Bojesen, S.E. AHRR (cg05575921) Methylation Safely Improves Specificity of Lung Cancer Screening Eligibility Criteria: A Cohort Study. Cancer Epidemiol. Biomark. Prev. 2022, 31, 758–765. [Google Scholar] [CrossRef]
- Tantoh, D.M.; Lee, K.J.; Nfor, O.N.; Liaw, Y.C.; Lin, C.; Chu, H.W.; Chen, P.H.; Hsu, S.Y.; Liu, W.H.; Ho, C.C.; et al. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM2.5 concentrations. Clin. Epigenetics 2019, 11, 69. [Google Scholar] [CrossRef]
- Tantoh, D.M.; Wu, M.C.; Chuang, C.C.; Chen, P.H.; Tyan, Y.S.; Nfor, O.N.; Lu, W.Y.; Liaw, Y.P. AHRR cg05575921 methylation in relation to smoking and PM2.5 exposure among Taiwanese men and women. Clin. Epigenetics 2020, 12, 117. [Google Scholar] [CrossRef]
- Gillman, A.S.; Helmuth, T.; Koljack, C.E.; Hutchison, K.E.; Kohrt, W.M.; Bryan, A.D. The Effects of Exercise Duration and Intensity on Breast Cancer-Related DNA Methylation: A Randomized Controlled Trial. Cancers 2021, 13, 4128. [Google Scholar] [CrossRef] [PubMed]
- Solomon, O.; Yousefi, P.; Huen, K.; Gunier, R.B.; Escudero-Fung, M.; Barcellos, L.F.; Eskenazi, B.; Holland, N. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. Environ. Mol. Mutagen. 2017, 58, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, B.; Su, Y.; Zhang, Y.; Chen, J.; Wu, W.; Cheng, Q.; Guo, X.; Zhao, Z.; Ke, X.; et al. Association of prenatal organochlorine pesticide-dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation. Life Sci. 2018, 200, 81–86. [Google Scholar] [CrossRef] [PubMed]
- van den Dungen, M.W.; Murk, A.J.; Kampman, E.; Steegenga, W.T.; Kok, D.E. Association between DNA methylation profiles in leukocytes and serum levels of persistent organic pollutants in Dutch men. Environ. Epigenet. 2017, 3, dvx001. [Google Scholar] [CrossRef] [PubMed]
- Tuminello, S.; Zhang, Y.; Yang, L.; Durmus, N.; Snuderl, M.; Heguy, A.; Zeleniuch-Jacquotte, A.; Chen, Y.; Shao, Y.; Reibman, J.; et al. Global DNA Methylation Profiles in Peripheral Blood of WTC-Exposed Community Members with Breast Cancer. Int. J. Environ. Res. Public Health 2022, 19, 5104. [Google Scholar] [CrossRef] [PubMed]
- Cugliari, G.; Allione, A.; Russo, A.; Catalano, C.; Casalone, E.; Guarrera, S.; Grosso, F.; Ferrante, D.; Sculco, M.; La Vecchia, M.; et al. New DNA Methylation Signals for Malignant Pleural Mesothelioma Risk Assessment. Cancers 2021, 13, 2636. [Google Scholar] [CrossRef] [PubMed]
- Allione, A.; Viberti, C.; Cotellessa, I.; Catalano, C.; Casalone, E.; Cugliari, G.; Russo, A.; Guarrera, S.; Mirabelli, D.; Sacerdote, C.; et al. Blood cell DNA methylation biomarkers in preclinical malignant pleural mesothelioma: The EPIC prospective cohort. Int. J. Cancer 2023, 152, 725–737. [Google Scholar] [CrossRef]
- Zhao, L.; Islam, R.; Wang, Y.; Zhang, X.; Liu, L.Z. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers 2022, 14, 5768. [Google Scholar] [CrossRef]
- Rafeeinia, A.; Asadikaram, G.; Moazed, V.; Darabi, M.K. Organochlorine pesticides may induce leukemia by methylation of CDKN2B and MGMT promoters and histone modifications. Gene 2023, 851, 146976. [Google Scholar] [CrossRef]
- Coppedè, F.; Franzago, M.; Giardina, E.; Lo Nigro, C.; Matullo, G.; Moltrasio, C.; Nacmias, B.; Pileggi, S.; Sirchia, S.M.; Stoccoro, A.; et al. A perspective on diet, epigenetics and complex diseases: Where is the field headed next? Epigenomics 2022, 14, 1281–1304. [Google Scholar] [CrossRef]
- Xin, J.; Du, M.; Gu, D.; Jiang, K.; Wang, M.; Jin, M.; Hu, Y.; Ben, S.; Chen, S.; Shao, W.; et al. Risk assessment for colorectal cancer via polygenic risk score and lifestyle exposure: A large-scale association study of East Asian and European populations. Genome Med. 2023, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.; Boyle, T.; Ahmed, M.; Lee, S.H.; Benyamin, B.; Hyppönen, E. Lifestyle, genetic risk and incidence of cancer: A prospective cohort study of 13 cancer types. Int. J. Epidemiol. 2023, dyac238. [Google Scholar] [CrossRef] [PubMed]
- Ladd-Acosta, C.; Fallin, M.D. DNA methylation signatures as biomarkers of prior environmental exposures. Curr. Epidemiol. Rep. 2019, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppedè, F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers 2023, 15, 1019. https://doi.org/10.3390/cancers15041019
Coppedè F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers. 2023; 15(4):1019. https://doi.org/10.3390/cancers15041019
Chicago/Turabian StyleCoppedè, Fabio. 2023. "Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes" Cancers 15, no. 4: 1019. https://doi.org/10.3390/cancers15041019
APA StyleCoppedè, F. (2023). Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers, 15(4), 1019. https://doi.org/10.3390/cancers15041019