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Simple Summary: Drug repurposing is an accelerated route for drug development and a promising 

approach for finding medications for orphan and common diseases. Here, we compiled databases 

that comprise both computationally- or experimentally-derived data, and categorized them based 

on quiddity and origin of data, further focusing on those that present high throughput omic data or 

drug screens. These databases were then contextualized with genome-wide screening methods such 

as CRISPR/Cas9 and RNA interference, as well as state of art systems biology approaches that enable 

systematic characterizations of multi-omic data to find new indications for approved drugs or those 

that reached the latest phases of clinical trials. 

Abstract: Modern drug discovery through de novo drug discovery entails high financial costs, low 

success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for 

overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. 

Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, 

genome-scale metabolic modeling, and machine learning techniques enables the proposal of new 

drug–target signatures and uncovers unanticipated modes of action for available drugs. Here, we 

discuss the current issues associated with drug repositioning in light of curated high-throughput 

multi-omic databases, genome-wide screening technologies, and their application in systems 

biology/medicine approaches.  

Keywords: drug repositioning; genomic screens; machine learning; systems pharmacology; systems 

medicine 

 

1. Introduction 

One of the first intentional and remarkable efforts for drug repositioning was carried out in 1987, 

when human immunodeficiency virus (HIV) became a full-blown pandemic with no known 
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treatments. Prior to that time, azidothymidine (AZT) had been under development as an anticancer 

drug and had failed during clinical trials due to the absence of efficacy. Surprisingly, it took just over 

two years to move from the initial demonstration of AZT’s anti-HIV property to its FDA approval 

[1]. Empirical investigations of repositionable drugs have led to the rescue of the utility of many FDA-

approved chemicals [2,3]. Empirical drug repositioning represents the process of finding an unknown 

target for a known drug in vitro. It has been proposed that empirical drug repositioning could be a 

starting point for the process of drug repurposing by the in vitro screening of known drugs or drug-

like molecules, in order to identify and validate candidates for repositioning which result in the 

following advantages: The knowledge on a potential new disease setting will be increased; a 

serendipitous, or hypothesis-free, assessment of compounds will be achieved by testing multiple 

compounds with different modes of action; and data-driven choices will be produced for further 

investigations in more complex phenotypic or in vivo tests. As an example, an FDA-approved drug 

library of 640 compounds was screened and 10 of them, including tamoxifen and raloxifene, were 

proposed as compounds that are able to protect hair cell loss in response to known inner ear 

mechanosensory hair cell toxins, such as neomycin, gentamicin, kanamycin, and cisplatin, which 

cause hearing impairment and balance disorders [2]. In rational drug repurposing, the target is 

known from the beginning and subsequently, the goal is to find a previously FDA-approved 

compound which can interact with the target of interest [4]. In empirical drug repositioning, a large 

number of combinatorial compounds are prepared and tested. Rational drug repurposing reduces 

the number of candidates in the early stages of an investigation and identifies entities with a high 

probability of success [5]. Drug repurposing, also known as drug rescuing, repositioning, redirecting, 

tasking, recycling, or reprofiling, is a suitable approach for reusing existing drugs. 

There are several reasons for the global need to repurpose currently approved drugs, instead of 

developing them de novo, including low success rates. At the beginning of 2020, there were 261,163 

ongoing clinical trial studies (February 2020, www.clinicaltrials.gov) distributed all over the world 

(Figure 1a). In 2019, there were 318,901 ongoing clinical trials; while it is unclear how many of these 

clinical trials featured de novo drug design, only 48 novel drugs were approved for usage by the FDA 

(www.fda.gov). Taking this >95% failure rate into account, drug development is an extremely time- 

and resource-consuming process [3] insofar as the rate of success is almost 1 out of 10,000 (Figure 1b) 

[4].  
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Figure 1. (a) Drug repositioning significantly cuts drug development costs and lengths of time. The 

distribution of the total number of conventional drug development studies and approved drugs for 

marketing is shown in the table and map. The USA, north North America, and Europe have the 

highest number of ongoing clinical trials [5]. (b) Two different methods for drug development are 

compared. The number of components (biological and/or chemical drug candidates), as input into de 

novo drug development, is 2000 times higher than drug repositioning, while drug repositioning may 

start in more advanced clinical trial phases and save several years when trying to find new treatments 

for emerging diseases. 

On the other hand, whilst swift development for emerging diseases such as Covid-19 caused by 

SARS-Cov-2 is crucial, conventional procedures for drug development last more than 10 years [6,7]. 
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FDA-approved drugs, or even those which have passed at least a phase I clinical trial (i.e., with 

proven human safety), could be considered as alternatives for rapid drug development. Considering 

that these drugs have passed at least a phase I clinical trial for one particular affliction, they could 

directly enter phase II or III of clinical trials for a second and unrelated indication. This path would 

take about two years, which is considerably shorter than the >14 years required for de novo drug 

development (Figure 1b), with an associated substantial cost reduction [3,8].  

A single gene may be involved in two or more biological pathways or diseases and by targeting 

this gene, two unrelated diseases may be remedied. In addition, several mutations may disrupt the 

same biological pathway. In this case, all drugs which have similar effects on this pathway could be 

a candidate for repurposing studies [9]. For instance, trametinib is a mitogen-activated protein kinase 

kinase (MEK) pathway inhibitor, and is used for the treatment of leukemia and pancreatic cancer [9]. 

On the other hand, drug off-targeting could be another procedure employed for drug repositioning 

when the biological activity of a drug is different from its intended biological target. Despite being 

known as a common contributor to drug side effects, in some cases, off-target activity can be 

advantageous for therapeutic purposes. For example, the repurposing of the antimineralocorticoid 

and diuretic spironolactone, which is known to produce feminization and gynecomastia due to 

antiandrogen activity as side effects, could be used as an antiandrogen in the treatment of conditions 

like acne and hirsutism [10]. Additionally, sildenafil (Viagra®, Revatio®) [11] and minoxidil 

(Rogaine®) were originally developed for hypertension [12], but their off-target effects during trials 

were further explored in erectile dysfunction and promoted hair growth, respectively. Recent studies 

have aimed to make use of high-throughput datasets and computational approaches for the 

prediction of off-targets, in order to propose suitable repurposable drugs [13,14]. For instance, Rao et 

al. [13] developed the computational Off-Target Safety Assessment (OTSA) using more than 1 million 

compounds to identify potential off-target interactions that could be linked to predictable safety 

issues. In addition, Huang et al. [14] combined in vitro and in silico approaches to develop an 

integrative framework for the systematic identification of on-/off-target pathways and clarification of 

the underlying regulatory mechanisms. 

Drug repositioning can be done based on prior knowledge or serendipity. This can be aided with 

the application of high-throughput screening, including CRISPR-Cas9 screening, RNAi Screening, 

and the application of systems medicine approaches for purposeful drug repositioning. One of the 

goals of genome-wide screening experiments is to generate and screen a population of genes to 

identify a particular phenotype or pathway and accordingly propose drug targets. The outcomes 

from screening studies could prepare the stage for systems medicine to integrate multi-omic data for 

accurate predictions of a drug’s mode of action, targets, and disease associations. 

2. High-Throughput Resources for the Identification of Drug Targets and Repositioning of 

Drugs 

Precision medicine aims to develop efficient therapeutic strategies with fewer side effects 

matching the unique disease signatures in specific cohorts, thus making use of precision 

pharmacology [15]. However, the accurate identification of suitable targets and repurposable drugs 

relies on databases (DBs) of chemical and biological compounds and high-throughput omic datasets. 

Here, we classified DBs indicated as suitable resources for the identification of drug targets and 

revealing the chemical–phenotype association according to the quiddity and origin of data, as well 

as whether they rely on computational- or wet lab-based approaches.  

One may distinguish five groups of DBs [16] and their content (Figure 2) as follows: i) Raw DBs, 

whose data are indirectly involved in drug repositioning and include literature curation, manual data 

uploading, data curation, integration, and clinical data; ii) Target-based DBs containing drug targets 

and related information, including information on pathways, enzymes, side effects, genes, and 

protein targets; iii) Specific DBs, which are those associated with specific software, disease data, and 

geographical information; iv) Drug Design DBs, which typically include small molecules, 3D 

molecular structures, and molecular replacement information; and v) Tool-based DBs, which 

embrace drug repositioning-related tools and include net-based tools (data mining through network 
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theory) and simple tools (other approaches for data mining). These DBs rely on many different types 

of biological and chemical data and present different content availabilities and assays (Table S1). 

Several DBs present particularly useful resources for data-driven analyses given their biological 

content, which often comprises high-throughput datasets (Table 1). 

 

Figure 2. Key databases as primary resources for drug repositioning. Databases (DBs) can be divided 

into five classes, including Drug Design DB, Specific DB, Target-based DB, Tool-based DB, and Raw 

DB. The content of each DB is shown with an edge to the subcategories. Refer to Table S1 for a full 

description. DBs with omics and high-throughput datasets are colored in yellow. Subcategories: 3D: 

three-dimensional information; CLI: clinical; CUA: curation; DI: disease; ENZ: enzyme; GE: gene 

target; GO: geographic; INT: integration; Lit: literature; MAU: manual; MO: molecular information; 

MT: multidrug; NB: net-base; PR: protein target; PTH: pathway; SDE: side effect; ST: simple tool; TR: 

software. Databases: ACHI: Achilles; ARREXP: ArrayExpress; BLGe: BaderLabGenes; BIOM: 

Biomodels; BMRB: Biological Magnetic Resonance Data Bank; CCOM: Cancer Common; CCLF: 

cancer cell line factory; CCLE: Cancer Cell Line Encyclopedia; CFBs: Clearity Foundation Biomarkers; 

CFCT: Clearity Foundation Clinical Trial; CGI: Cancer Genome Interpreter; ChBLI: The ChEMBL 

Bioactivity Database; CIViC: Clinical Interpretations of Variants in Cancer; CKB: The Jackson 

Laboratory Clinical Knowledgebase; CTDB: Cheminformatic Tools and Databases; CMI: Caris 

Molecular Intelligence; CORUM: comprehensive resource of mammalian protein complexes; CTR: 

Cancer Therapeutics Response Portal; CTD: The Comparative Toxicogenomics Database; CTRP: 

Clinical Trials Reporting Program; dGene: The Druggable Gene List; DGIdb: drug–gene interaction 

database; DMAP: Dependency Map; DMC: Drug Map Central; DNET: Drug-Disease Network 

database; DoCM: Database of Curated Mutations; DPTH: Drug Pathway database; DRUGB: 

DrugBank; DRHUB: drug repurposing hub; DRAR: Drug Repurposing Adverse Reaction; DSDB: 

Drug Signatures Database; DSIG: DrugSig; DTW: Drug Target Web; ENCODE: Encyclopedia of DNA 

Elements, Entrez, Ensembl; FDA: FDA Pharmacogenomic Biomarkers; FOGe: Foundation One Gene; 

GEO: Gene Expression Omnibus; GPIs: Guide To Pharmacology Interactions; GPCR: G-protein-

coupled receptors assay bank; GDSC: Genomics of Drug Sensitivity in Cancer; GO: The Gene 

http://www.broadinstitute.org/ccle
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Ontology; GRNAi: GenomeRNAi; GSEA(MSigDB): Gene Set Enrichment Analysis; GSDB: Gene Set 

Database; GTPGe: Guide To Pharmacology Genes; HCa: Hingorani Casas; HIVRT: HIV Drug 

Resistance Database; HkG: Hopkins Groom; HTRCP: host transcriptional response connectivity map; 

L1000: Library of Integrated Network-based Cellular Signatures (LINCS) L1000; MCGCT: My Cancer 

Genome Clinical Trial; METN: Metlin; META: Metabolic Atlas; MskIm: Memorial Sloan Kettering 

IMPACT; NCI: Cancer Gene Index; NCATS: National Center for Advancing Translational Sciences; 

NNFIN: network-based similarity finder; ODB: Ontario database; OGEE: Online GEne Essentiality; 

OMDI: Omics Discovery Index (omicsdi); OncoKB: A Precision Oncology Knowledge Base; PACO: 

pathway commons; HPA: Protein Atlas; PBL: ProBiS-ligands; PDTD: Potential Drug-Target Database; 

PhGKB: The Pharmacogenomics Knowledgebase; PRIDE: PRoteomicsIDEntifications (PRIDE) 

database; PROM: Promiscuous; RepDB: Repurpose DB; RLa: RussLampel; SAINT: Significance 

Analysis of INTeractome; SBIOS: Swiss BIOisostere; SCYP: Super Cytochrome P450; SIDER: Side 

Effect Resource; SMPDB: Small Molecule Pathway Database; TALC: Targeted Agents in Lung Cancer; 

TCSBN: tissue- and cancer-specific biological networks; TDR: Tropical Diseases Research; TDGCT: 

The Druggable Genome (TDG) Clinical Trial; TEND: trends in the exploitation of novel drug targets; 

TTD: Therapeutic Target Database. 

Table 1. DBs and their associated omic data as useful resources for drug repositioning. 

Database Type of Omics data Link Ref. 

ARREXP Functional genomics data https://www.ebi.ac.uk/arrayexpress/ [17] 

BMRB Proteomics, metabolomics http://www.bmrb.wisc.edu/ [18] 

CCLE Genomic data  https://portals.broadinstitute.org/ccle [19] 

DRUGB Transcriptomics https://www.drugbank.ca/ [20] 

DMAP Transcriptomics, proteomics https://depmap.org/portal/ [21] 

ENA Genomics, transcriptomics https://www.ebi.ac.uk/ena [22] 

ENCODE Genomics, transcriptomics  https://www.encodeproject.org/ [23] 

ENTREZ 
Genomics, transcriptomics, 

proteomics, taxonomics 

https://www.ncbi.nlm.nih.gov/Class/MLACo

urse/Original8Hour/Entrez/ 
[24] 

ENSEMBL Genomics, transcriptomics https://www.ensembl.org/index.html [25] 

GDSC Transcriptomics  https://www.cancerrxgene.org/ [26] 

GEO 

Functional genomics, 

transcriptomics, proteomics, 

phenomics 

https://www.ncbi.nlm.nih.gov/geo/ [27] 

HIVRT Genomics, phenomics  https://hivdb.stanford.edu/ [28] 

HTRCP Transcriptomics  
http://biotech.bmi.ac.cn/papers/2015/luhan.ht

ml 
[29] 

L1000 Transcriptomics 

http://www.lincsproject.org/LINCS/tools/wor

kflows/find-the-best-place-to-obtain-the-

lincs-l1000-data 

[30] 

META Metabolomics https://metabolicatlas.org/ [31] 

OMDI 

Genomics, proteomics, 

transcriptomics and 

metabolomics 

https://www.omicsdi.org/ [32] 

HPA Proteomics https://www.proteinatlas.org/ [33] 

PRIDE Proteomics https://www.ebi.ac.uk/pride/archive/ [34] 

NCATS Chemical genomics  https://ncats.nih.gov/ [35] 

OGEE Genomics, transcriptomics http://ogee.medgenius.info/browse/ [36] 

REMC Epigenomics  http://www.roadmapepigenomics.org/ [37] 

TDR Genomics https://tdrtargets.org/ [38] 

3. Computational- and Wet Lab-Based Assay DBs  

Among the assay-based DBs, one may consider two general groups of databases based on the 

main approaches they use to obtain data, including computational- and wet lab-based assays. 

Computational-based databases are those which only benefit from in silico approaches, whether 

https://www.ebi.ac.uk/arrayexpress/
https://www.drugbank.ca/
https://depmap.org/portal/
https://www.ebi.ac.uk/ena
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/Class/MLACourse/Original8Hour/Entrez/
https://www.ncbi.nlm.nih.gov/Class/MLACourse/Original8Hour/Entrez/
https://www.ensembl.org/index.html
https://www.cancerrxgene.org/
https://www.ncbi.nlm.nih.gov/geo/
https://hivdb.stanford.edu/
http://biotech.bmi.ac.cn/papers/2015/luhan.html
http://biotech.bmi.ac.cn/papers/2015/luhan.html
http://www.lincsproject.org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-l1000-data
http://www.lincsproject.org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-l1000-data
http://www.lincsproject.org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-l1000-data
https://metabolicatlas.org/
https://www.omicsdi.org/
https://www.proteinatlas.org/
https://www.ebi.ac.uk/pride/archive/
https://ncats.nih.gov/
http://ogee.medgenius.info/browse/
http://www.roadmapepigenomics.org/
https://tdrtargets.org/
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using primary assays such as data curation or advanced approaches, including network analysis. Wet 

lab-based datasets acquire data through wet lab assays. 

3.1. Computational-Based Assay DBs  

Various computational methods may be employed to acquire or collect biological data. For 

instance, text mining is a powerful technology for swiftly sifting key information through the vast 

quantities of biomedical literature. Text-mining techniques discover and extract new and unknown 

information from different resources, including databases, websites, books, reviews, and articles [39]. 

Manual data curation filters research results as they are generated, which means it unifies data for 

long-term sustainability and usage. In addition, this method monitors the reliability, reusability, and 

accessibility of obtained data [40]. Through integration, data from different sources may be processed 

and combined into a single, unified view [41,42]. 

Many datasets have followed one or a combination of these procedures, with or without 

experimental results, to design a comprehensive biological DB. For instance, GenomeRNAi (GRNAi) 

[43] is a manual extraction of phenotypes from RNAi screening in Drosophila and Homo sapiens 

literature, in addition to information about resources of RNAi reagents and their predicted quality. 

A dependency map (DMAP) [19] uses predictive modeling to collect and curate data from 

subdivisions of the DepMAP project, in order to propose gene–drug–disease associations. Gene Set 

Enrichment Analysis (GSEA)-MSigDB benefits from the gene set enrichment analysis method [42] 

and the Guide To Pharmacology Interactions (GPIs) [44], and Gene Set Database (GSDB) [45] benefit 

from data integration to present results. 

In the case of methods used to retrieve drug–target associations, the Drug-Disease Network 

database (DNET) [46] uses differential co-expression analysis to obtain 1326 disease relationships 

among 108 diseases. Tissue- and cancer-specific biological networks (TCSBN) apply co-expression 

and integrated network analysis for 17 cancers and three tissues [33,47]. Additionally, Promiscuous 

(PROM) [48] organizes and curates data based on network concepts to predict new usages for existing 

drugs, considering the side effects. The Comparative Toxicogenomics Database (CTD) [49] provides 

manually curated information about chemical–gene/protein–disease associations, and the drug 

repurposing hub (DRHUB) [50] drug–gene interaction database (DGIdb) [51], DrugBank (DRUGB) 

[20], Small Molecule Pathway Database (SMPDB) [52], and Repurpose DB (RepDB) are 

comprehensive resources for gene targets, drugs and their categories, gene–drug interactions 

(DGIdb), and small molecule pathways (SMPDB). RepDB [53] is a compendium of drug targets, 

repurposed drugs, and their associated primary and secondary diseases. This database combines 

information on 253 drugs and 1125 diseases and using enrichment analysis, it determines key 

biological pathways, functional mechanisms, physicochemical features, and side effects associated 

with successfully repositioned drugs. These resources can help other researchers to design a better 

investigation for finding new targets for approved or even repositioned drugs. 

Several repositories allow for manual and ununified dataset depositing, and include 

ArrayExpress [17] and Gene Expression Omnibus (GEO) [27], which contain functional genomics 

data from high-throughput functional genomics experiments. The Biological Magnetic Resonance 

Data Bank (BMRB) [18] contains experimental and derived data gathered from nuclear magnetic 

resonance (NMR) spectroscopic studies of biological molecules. BioModels [54] is a repository of 

mathematical models of biological and biomedical systems. In order to systematically analyze these 

repositories, some computational tools have aimed to integrate information for purposes that include 

proposing therapeutic targets. For instance, the Omics Discovery Index (OMDI) [32], as an open-

source platform that enables access to and discovery and dissemination of omics data sets, may be 

used to integrate proteomics, genomics, metabolomics, and transcriptomics data sets from dozens of 

databases and repositories which have agreed on a common metadata structure framework and 

exchange format, and have contributed to OMDI. Similarly, the Metabolic Atlas [31] integrates open 

source genome-scale metabolic models. In addition, CTD utilizes various tools to discover the drug–

target association through data provided by many datasets and repositories, including The 
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Pharmacogenomics Knowledgebase (PhGKB) [55], DRUGB [20], geographic (GO) [56], and NCBI 

[57]. 

3.2. Wet Lab-Based Assay DBs  

DBs containing information which is created through experimental approaches can provide the 

information required for many other projects and computational assay-based DBs. In this case, three 

different purposes might be considered. In the first group, projects may encompass large amounts of 

ununified raw data (i.e., Big Data), but this does not enable their direct application in drug 

repositioning. The second group includes projects which benefit from a specific approach and 

directly create relevant information about drugs, gene targets, protein targets, or any other data 

which clearly pave the way for drug repositioning. Finally, the third group is comprised of projects 

that aim to develop experimental methods in order to escalate the efficiency of experimental 

approaches.  

The value of data provided by the first group is undeniable and large amounts of time and many 

efforts have been devoted to developing them. However, whilst most of the provided data are not 

directly aimed at drug repositioning, they may nevertheless be mined by advanced computational 

approaches. Many consortiums have achieved strikingly crucial advances in coordinating these 

efforts. For instance, the goal of the ENCODE consortium [23] is to build a comprehensive list of 

functional elements in the human genome, including elements that act at the protein and RNA levels, 

and regulatory elements that control cells and circumstances in which a gene is active. Systematically 

mapped regions of transcription, transcription factor associations, the chromatin structure, and 

histone modification in ENCODE have enabled researchers to assign biochemical functions for 80% 

of previously unknown protein-coding genomic regions. REMC [37], which is a similar project to 

ENCODE, aimed to identify DNA methylation, histone modifications, chromatin accessibility, and 

small RNA transcripts in primary human tissues. Another interesting example in this group is the 

LINCS L1000 [58,59] project, which developed its own method to quantify transcriptomic data from 

treated and untreated cancer cell lines. L1000 is a cost-effective high-throughput method that can be 

used to estimate genome-wide mRNA expression on a large scale based on the direct measurement 

of a reduced representation of the transcriptome (978 landmark genes), which captures most of the 

information contained in the entire transcriptome [58] and computationally infers the remaining 

transcriptome [27].  

Other DBs enable user queries to identify drug targets and repositionable drugs. For instance, 

the Achilles (ACHI) project, which is one of the subdivisions of DMAP and provides its essential 

data, systematically identifies and catalogs gene essentiality in genomically characterized cancer cell 

lines through genome-scale RNAi and CRISPR-Cas9 genetic perturbation reagents, in order to 

identify those genes that affect cell survival [21]. We discuss RNAi and CRISPR-Cas9 screens below. 

Identifying and targeting cancer dependencies with small molecules is the aim of the Cancer 

Therapeutics Response Portal (CTR) [60], which has accelerated the discovery of patient-matched 

cancer therapeutics. CTR has generated a set of 481 small-molecule probes and drugs that selectively 

target distinct nodes in cell circuitry and that collectively modulate a broad array of cell processes. In 

addition, the sensitivity of 860 deeply characterized cancer-cell lines toward Informer set compounds 

is quantitatively measured and connected to cancer features, including mutations, gene expression, 

copy-number variation, and lineages, and relevant results are freely available on the CTR database 

[61]. The Cancer Cell Line Encyclopedia (CCLE) provides public access to genomic data, analysis, 

and visualization for cancer cell lines [19]. It is one of the many large panels of comprehensively 

characterized human cancer models and helps to study genetic variants, candidate targets, and small-

molecule and biological therapeutics. In addition, it may be used to identify new marker-driven 

cancer dependencies by examining genetic, RNA splicing, DNA methylation, histone H3 

modification, microRNA expression, and reverse-phase protein array data for 1457 cell lines [19]. The 

Genomics of Drug Sensitivity in Cancer (GDSC) DB characterized many human cancer cell lines and 

screened them with hundreds of compounds, and accordingly, made drug response data and 

genomic markers of sensitivity available [26]. 
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Among the projects that aim to escalate the experimental efficiency is the National Center for 

Advancing Translational Sciences (NCATS) consortium at NIH. The aim of this consortium is to 

develop, demonstrate, and disseminate tools and solutions to be used by all translational 

investigators. NCATS arms researchers with translational science information by making new 

methods, data, and information publicly available. For instance, the Assay Guidance Manual (AGM), 

as a procedure for data transparency and release in NCATS, resulted in the successful development 

of robust, early-stage drug discovery assays [62]. In addition, in the case of the availability of data, 

NCATS serves the pharmacological industry through PubChem [63] (small organic molecules and 

their activities against biological assays), the NCATS pharmaceutical collection [64] of active 

pharmaceutical ingredients and small molecules, and small molecule probes [65]. 

Another example of efforts aiming to escalate the experimental efficiency is the design and 

implementation of high-throughput G-protein-coupled receptor (GPCR) assays in GPCR Assay Bank 

that allow the cost-effective screening of large compound libraries, in order to identify novel drug 

candidates [66]. GPCRs are some of the most successful therapeutic target assays for a broad 

spectrum of diseases and mediate many important physiological functions. The GPCR Assay Bank is 

the largest readily accessible collection of approved drugs and has several subdivisions 

(https://web.duke.edu/gpcr-assay/my_screening.html), including Johns Hopkins Clinical Compound 

Library (JHCCL) (1514 compounds), KinaseGold Library (3893 compounds), PresTwick Library (1120 

compounds), Sigma Kinase Library (97 compounds), Steroid Drug Library (1659 compounds), Tripos 

Library (50K compounds), TimTec NPL (Natural Product Library, 720 compounds), ActiProbe-5K 

(5K compounds), and Chemdiv Library (https://www.chemdiv.com/) (299,408 compounds). 

4. Application of Genome-Wide Screening in Drug Repositioning 

Functional genetic screening connects genes or genetic elements to phenotypes-of-interest. In 

this case, several methods have been gradually developed [67]. RNA interference (RNAi) 

oligonucleotides for loss-of-function studies [68] and cDNA overexpression libraries for gain-of-

function studies [69] were performed prior to the clustered regularly interspaced short palindromic 

repeats (CRISPR)-associated Cas9 endonuclease system [67] and systems biology approaches [70]. 

All of these methods, especially CRISPR-Cas9, revealed a wealth of mechanistic insights, from drug 

resistance in cancer to neuronal toxicity in amyotrophic lateral sclerosis, and also made 

prerequisite information for drug repositioning by introducing drug targets available.  

4.1. Drug Target Identification through RNA Interference Screening 

RNA interference (RNAi) is a post-transcriptional gene regulating system which benefits from 

small noncoding RNAs and is utilized for the sequence-specific knockdown of a gene’s function 

[4,71]. Small interfering RNAs (siRNAs), individually or as a pool of synthetic RNAs, are designed to 

specifically target unique messenger RNAs (mRNA) for a period of time or permanently [72]. High-

throughput RNAi screening leads to the discovery of gene functions and its applications have been 

proven in many fields, such as infection, cancer, obesity, and aging. 

RNAi can be introduced to the cell in various ways (Figure 3a), but all of them will end up with 

the siRNA duplex(es) entering the RNA-induced Silencing Complex (RISC) pathway. RISC can 

unwind and cleave the RNAi and realize the guide strand to pair with the target mRNA via perfect 

sequence complementarity. Afterwards, the RISC which is activated and specified by guide strand 

cleaves the target mRNA and accordingly, the protein production is abolished [73]. 

In Figure 3b, we provide a general workflow of siRNA screening towards drug repositioning. 

After transfection of the cell culture system with an siRNA library, a particular disease model (e.g., 

specific cancer) is induced in the cultured cells. Pre-determined endpoint assays are conducted at 

desired time points to yield hits (the genes which have an influence on disease) and lists of gene hits 

are compiled. Subsequently, these genes are validated in various conditions, such as different cell 

types, viruses, inductions, and different end-point assays. After the detection of a target gene, 

validation can be conducted by single siRNAs instead of siRNA pools. Eventually, these genes can 

be potentially targeted as a therapeutic disease intervention strategy [72]. 
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Figure 3. Various RNA interference (RNAi) constructs used for temporary or permanent gene 

silencing and a general workflow of small interfering RNA (siRNA) screening towards drug 

repositioning (adapted from [72]). (a) siRNA, endoribonuclease-prepared siRNA (esiRNA), and long 

double-strand RNA (dsRNA), as naked RNAs, can be introduced to the cell through many pathways, 

such as lipid-based transfection reagents or electroporation, or active uptake by target cells through 

receptor-mediated endocytosis. Inside the cytoplasm, dsRNA is cleaved by endonucleases. Then, the 

obtained siRNA, along with the directly introduced siRNAs and siRNAs coming from the nucleus of 

hard-to-transfect cells which were achieved from viral vectors carrying siRNA or short hairpin RNA 

(shRNA) expression cassettes, are loaded into the RNA-induced Silencing Complex (RISC) to facilitate 

gene expression knock down. (b) Drug targets and available compounds are determined by in silico 

pathway analyses and database mining after two-step in vitro screening. Prior to clinical analysis, the 

efficiency of these drug candidates can be validated by in vitro and in vivo approaches. 

Among the successful experiments involving genome-wide RNAi screening is the application 

of a library of 74,905 retroviral shRNAs targeting 32,293 unique human transcripts to determine 

synthetic lethal interactions with the Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene, 

which is the isoform most commonly mutated in human cancers [74]. More recently, Takai et al. 

carried out a genome-wide RNAi through the GeneNet h50K shRNA library, which is composed of 

~200,000 lentiviral shRNAs and more than 47,000 transcript targets, in order to identify genes with a 

synthetic lethal interaction with epithelial cellular adhesion molecule (EpCAM) as a potential 

therapeutic target for the EpCAM + AFP + Hepatocellular carcinoma subtype [75]. 

RNAi high-throughput screening, in spite of allowing for the swift discovery of the molecular 

basis of many diseases, and the identification of potential pathways for developing safe and effective 

treatments [72], presents issues associated with off-targeting [71]. 

4.2. Drug Target Identification through Genome-Wide CRISPR-Cas9 Screening 

CRISPR-Cas9 genome-wide essentiality screens present suitable technologies for improving 

target prediction while minimizing off-targeting, thus improving on RNAi screens. Repurposing 

CRISPR as an RNA-guided platform for the sequence-specific control of gene expression was 

developed in 2013 [76]. Since then, many efforts have been made to conduct gene screening through 

this approach [9,77,78]. CRISPR-Cas9-based technology allows the discovery of efficient and precise 

new or repurposed drug candidates for genomic or proteomic targets. Systematic screenings of genes 

associated with a disorder can be conducted by combining the Cas9 endonuclease and a pooled guide 

RNA (gRNAs) library [75,79,80]. The gRNAs direct the Cas9 enzyme for DNA double strand 
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cleavage, while different kinds of mutations might be introduced by the error-prone Non-

Homologous End Joining (NHEJ) DNA repair mechanism [81,82]. Therefore, it is possible to perturb 

many target genes simultaneously by using predesigned pooled gRNAs.  

CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi), representing more powerful 

tools than RNA interference (RNAi) libraries, are highly useful in screening for gain and loss of 

function studies, respectively. Positive and negative selection using CRISPR libraries can clarify drug 

resistance mechanisms and survival-essential genes as drug targets [83]. CRISPR-Cas9 screening is 

currently employed to systematically investigate genes associated with lethal phenotypes and 

subsequently, propose drug targets at the gene and/or protein levels and accordingly identify likely 

repositionable drug candidates [84–87] (Figure 4).  

 

Figure 4. Pipeline of drug repositioning for a specific cancer or other disease. First, clustered regularly 

interspaced short palindromic repeats (CRISPR)-Cas9 dropout screening is applied for a negative 

selection of survival essential genes. Second, the number of dropped out selected genes is diminished 

by collecting information from databases and literature reviews. Third, in vivo CRISPR-Cas9 

screening of an animal model of cancer or another disease will result in a few gene targets. Finally, 

FDA-approved drugs or those which have passed primitive phases of clinical trials could be tested as 

inhibitors for discovering essential survival genes. 
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Fused genes are two independent genes formed through structural rearrangements, the 

transcription of adjacent genes, or the splicing stage of pre-messenger RNA, which may lead to the 

dysfunctionality of modified genes and deregulation of associated genes, and afterward, the probable 

overexpression of oncogenes and/or decreased expression of tumor suppressor genes [88].  

One of the first large-scale systematic analyses of thousands of gene fusions in human cancers 

analyzed 1034 samples from 1011 unique cancer cell lines to primarily define gene fusions [9]. 

Subsequently, whole-genome CRISPR-Cas9 drop-out screening was applied to identify gene fusions 

required for cancer cell fitness [84–87,89]. Similar techniques may be applied to identify 

repositionable anti-cancer drugs and propose new treatments by determining several fused genes as 

potential targets.  

5. Systems Biology Application in Drug Repositioning 

Wet lab high-throughput approaches examine all possible targets to find a repurposable drug 

[90]. In this regard, computer-assisted systematic drug repurposing methods may overcome the 

limitations associated with wet lab high-throughput techniques using focused resources based on 

knowledge of the gene/protein target and literature [91]. 

Personalized drug repurposing may now be employed systematically [90] by employing a 

systems medicine approach to handle the massive amounts of medical information which is 

accumulated in DBs [92]. Five major categories may be employed to classify in silico drug 

repurposing methods, namely network-based, machine learning, chemoinformatic-, bioinformatic-, 

and signature-based approaches [90]. 

5.1. Network-Based Methods in Drug Repositioning 

Network-based methods integrate various high-throughput data to address issues in drug 

repositioning and drug combination. Specifically, they rely on known biological relationships of 

drug–gene–metabolite–protein–disease to generate networks, of which DisGeNET [93], the 

Therapeutic Target Database (TTD) [94], BindingDB [95], STRING [96], STITCH [97], and TCSBN [47] 

employ network-based approaches. Key studies in the field have highlighted how network-based 

methods may be employed for drug repositioning and drug combination. For instance, by 

quantifying the network proximity of disease genes and drug targets [98] and also drug targets and 

disease proteins [99] in the human (protein–protein) interactome, many novel drug–disease 

relationships for over 900 FDA-approved drugs and clinically efficacious drug combinations for 

specific diseases were identified. It should be noted that network-based methods are not alternatives, 

but complementary, to experimental approaches, capable of systematically capturing and 

characterizing coordinated cellular responses that would otherwise be technically challenging 

experimentally, further focusing clinical-phase attention on precise objectives [100]. To accomplish 

these tasks, network-based methods make use of various data, including phenotypic, drug-related, 

and molecular data, to construct various network types, such as Drug–Drug Interaction Networks, 

Drug–Target Interaction Networks, Drug–Disease Interaction Networks, and Multilayer Networks. 

By providing different biological characterizations, network-based methods are thus excellent 

frameworks in drug repositioning [100]. The idea behind network-based cluster approaches which 

can reveal the drug–disease or drug–target associations is that biological entities (e.g., diseases, drugs, 

and proteins) in the same module (also known as subnetworks or groups) share similar features in a 

biological network. Network-based approaches apply concepts from graph theory, where genes, 

drugs, diseases, or metabolites share biologically-demonstrated or putative associations. A module 

can consist of drug–disease, drug–drug, or drug–target relationships and this information can be 

extracted using the topological structure of a network. Density-based spatial clustering of 

applications with noise (DBSCAN) [101], Ordering Points To Identify the Clustering Structure 

(OPTICS), and the Statistical Information Grid (STING) [102] are some examples of the algorithms 

employed in network analyses. Importantly, in many cases, pleiotropic biological functions may 

occur; for instance, the proteins that are related to different cellular functions and consequently 

contribute to pleiotropic phenotypes when mutated [103]. Employing a k-means-based network 
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cluster algorithm, chemical–protein interactions were recently used to uncover repositionable drugs 

in small-cell lung cancer [104]. 

Network-based propagation methods may be divided into local (i.e., consider information from 

a subset of the network’s nodes) [105] and global (i.e., derive information from the entire network) 

methods [106]. These approaches apply prerequisite information from the source node(s) to other 

network nodes [90,107]. The efficiency of these methods were proven for discovering disease–target, 

disease–gene, and disease–drug connections [108], and have been shown to provide a higher efficacy 

compared to other methods [106]. In addition, a comprehensive procedure based on formulating 

constraints on a score function related to the smoothness of the disease–gene network may lead to 

the discovery of disease–gene and disease–protein relationships [109]. This method could 

successfully predict gene targets for type 2 diabetes, Alzheimer’s disease, and prostate cancer [90]. 

Additionally, methotrexate, gabapentin, cisplatin, donepezil, and risperidone could be repurposed 

for a second indication through a disease–gene–drug network propagation approach [110]. These 

observations indicate that drug repurposing conducted through network-based approaches presents 

an efficient and systematic approach for proposing repurposable drugs.  

Computational methods may also derive information from genome-scale metabolic networks 

through the utilization of genome-scale metabolic models (GEMs). These are models that depict 

gene–protein–reaction relationships for entire metabolic genes in an organism, and can be simulated 

to predict metabolic fluxes for various systems-level metabolic studies [111]. For instance, a prostate 

cancer (PRAD)-specific GEM was reconstructed to investigate prostate cancer metabolism by the 

integration of global gene expression profiling of cell lines treated with more than 1000 different 

drugs [112]. As a result, among sulfamethoxypyridazine, azlocillin, hydroflumethiazide, and 

ifenprodil, as repositionable drugs proposed through an in silico cell viability assay, ifenprodil could 

be validated using an in vitro cell assay. In another study [113], GEMs used for drug design were 

assessed. In this regard, a list of human metabolites with KEGG [114] identifiers and their structures 

were retrieved using an updated human GEM [115]. Drug structures were compiled from DRUGB 

[20] and drug-metabolite pairs were analyzed. Finally, the effects of lipoamide analogs on MCF7 (a 

breast cancer cell line) and airway smooth muscle (ASM) cells were proposed and subsequently 

successfully demonstrated experimentally. 

5.2. The Application of Machine Learning in Drug Repositioning 

Machine-learning techniques have recently been employed to propose new drug candidates 

[116,117], where supervised approaches predict potential associations between approved drugs and 

health disorders [118]. For instance, the application of classification algorithms, including logistic 

regression, random forest, and support vector machine algorithms, has been conducted to construct 

prediction models and predict previously unknown pharmacological effects of different compounds 

[119]. In this case, in order to define the associations between drugs and diseases, four classes of drug-

drug similarity (chemical structure, side-effects, gene ontology, and targets) and three categories of 

disease-disease similarity (phenotypes, human phenotype ontology, and gene ontology) were used. 

Finally, random forest methods exhibited the highest performance and could predict novel 

indications for 20 existing drugs and 31 compounds, which were subsequently validated using 

clinical trial data [119]. 

A swift escalation in the volume of biomedical literature has made it impossible to manually 

discover all meaningful connections between biomedical concepts, especially drug repositioning, 

which requires the integration of various aspects of biomedical knowledge. Hence, the automated 

text mining of literature applies natural language processing to transform unstructured text from 

various sources (databases, websites, books, reviews, and articles) into normalized, structured, and 

quantifiable data and their connections [120]. Co-occurrence methods reveal the association between 

two non-co-occurrence terms through discovering a third linking term that appears directly with 

each of them [121]. Recently, a comprehensive study was conducted to evaluate different drug 

repurposing strategies for Parkinson’s disease by text mining the scientific literature through 

comparing various methods, including the extraction of biomedical entities and their relationships, 
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construction of a knowledge graph for Parkinson’s disease, knowledge representation learning, and 

machine learning-based prediction [122]. As a result, unstructured biomedical literature data were 

effectively transformed to structured data that could be directly used by modern computational 

methods, such as machine learning [122]. Text-mining methods were recently applied, together with 

network analyses, to create disease-specific drug–protein connectivity maps [123]. These approaches 

extract disease–protein relationships from molecular interaction networks through network mining 

and investigate PubMed abstracts to predict novel identify drug–protein associations. In this regards, 

diltiazem and quinidine, as hypertension and arrhythmia drugs, respectively, can be repurposed for 

Alzheimer’s disease, which has been confirmed by clinical evidence. 

The application of deep learning as a promising approach for capturing complex and highly 

non-linear and heterogenous network structures has been actively explored. For instance [124], 10 

drug–disease, one drug–side-effect, one drug–target, and seven drug–drug networks were integrated 

by a network-based deep-learning approach for in silico drug repurposing. Eventually, in addition 

to detecting an approved drug–disease association from the ClinicalTrials.gov database, 

repositionable drugs and novel drug targets were proposed for Alzheimer’s disease (e.g., risperidone 

and aripiprazole) and Parkinson’s disease (e.g., methylphenidate and pergolide). 

5.3. Chemoinformatic-Based Methods in Drug Repositioning 

Chemoinformatic approaches are one of the primary methods employed for screening 

repositionable drugs and create chemical libraries submitted to an in silico screen. These approaches 

are the basic components of many datasets, including DRUGB [20]. Using a similarity-based 

approach that correlates the anatomical therapeutic chemical classes of drug indications and their 

similarity, related therapeutic indications are proposed based on chemically similar drugs [125]. 

Ligand-based and structure-based approaches can be embedded in chemoinformatic-based 

drug repurposing. The story behind these two methods is that analogous compounds are likely to 

have similar biological properties [126] and proteins with almost the same structures tend to have 

similar functions and bind identical compounds [127]. However, the drugs identified through these 

two methods may share the same pathway with the template drug and accordingly, for a specific 

disease, if the template drug has already been used as a treatment, the role of these techniques 

becomes limited [128]. In addition, the lack of specificity is a serious drawback in this strategy. For 

instance, thalidomide has two chiral forms (the same chemical composition, but having mirrored 

structures). One can treat morning sickness, while the other form can have teratogen effects [129]. In 

this regard, molecular docking has been introduced as the most commonly used tool for structure-

based virtual screening, in order to repurpose available drugs [130,131]. In this regard, Pinzi et al. 

repurposed cannabigerol, which is a non-psychoactive cannabinoid, as a low micromolar inhibitor of 

the enoyl acyl carrier protein reductase enzyme using an integrated ligand-based and structure-based 

study. 

5.4. Bioinformatics-Based Methods in Drug Repositioning 

From sequence alignment to domain similarity identification tools, a disease-centric approach is 

known as one of the principles of bioinformatical drug repositioning that tends to find diseases with 

the same dysfunctional proteins, which is often not clearly identified in experimental assays [90]. 

Local and global structural similarities are two different concepts; one can only be considered 

for similar binding sites of non-evolutionary proteins with variable folding and functions, and the 

other one is related to the whole structure of evolutionary proteins with considerable homology, 

respectively [132]. Ehrt et al. [127] claimed that the algorithms developed so far for binding site 

similarity assessments are not convincing since adequate benchmarking studies have not been 

developed. Accordingly, they suggested using a combination of in silico and experimental methods 

in a workflow to enhance the accuracy.  
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5.5. Signature-Based Drug Repositioning 

The idea behind signature-based drug repositioning is that if the gene expression signature of a 

particular drug is opposite to the gene expression signature of a disease, that drug may have a 

potential therapeutic effect on the disease [133]. Drug signatures can be retrieved by comparing the 

gene expression profile of a cell line before and after its exposure to a specific drug. However, it 

should be considered that gene signatures are often used to address the off-targets of drugs in 

network pharmacology and these methods may not explain the relation between gene-expression 

alterations [134]. Some studies have tried to overcome this drawback through network-based analysis 

[133]. However, in complex disorders such as cancer [135], Alzheimer’s disease [136], and 

inflammatory bowel disease, promising results were achieved through signature-based methods 

[137]. The Connectivity Map (cMap) [138] project was later joined with the LINCS L1000 project [30], 

which are two comprehensive and pioneer databases in the field of signature-based drug 

repurposing providing the gene expression profiles of dozens of cell lines treated with thousands of 

small molecules. It is obvious that dealing with such a large dataset would be challenging for 

computational systems biologists who aim to analyze and visualize Big Data. The cMap project 

presents a valuable resource for conducting large-scale assays of many small molecules. However, it 

is not without limitations. First, while comprehensive, it has tested few cell lines. Second, it presents 

limited drug perturbation data and does not provide a comprehensive view of drug dosages and 

temporal dynamics upon drug exposure. Third, because of this, its application in other cell lines and 

biological samples is very limited and has been demonstrated to not be very robust [139]. However, 

extensively examining a high number of small molecules, with different dosages and time points, is 

an extremely expensive and time-consuming process. Seeking to overcome these issues, others 

sought to devise systematic approaches to test a large number of samples and compounds, while 

aiming to also provide a systematic view of intracellular behavior (L1000). However, doing so is not 

without its perils, as previously mentioned with regards to the computationally heavy process [139]. 

Accordingly, a systematic compound signature discovery pipeline, called Enrichment of Gene Effect 

to a Molecule (EGEM), was developed by Liu et al. [140], which was derived from a rank-based gene 

set enrichment analysis and showed a better performance in comparison to the original. To date, 

several drug candidates have been proposed thanks to signature-based studies of cMap and L1000 

data, including KM-00927 and BRD-K75081836 as novel histone deacetylase inhibitors and 

mitomycin C as a topoisomerase IIB inhibitor [141]. 

6. Conclusions and Future Direction 

The integration of large assays is crucial for accurate predictions of potential therapeutic targets 

from high-throughput assays. DBs store both computationally- and laboratory-based created data 

and, subsequently, systems medicine makes use of these resources to decipher potential disease 

mechanisms, targetable genes and pathways, and prognostic or theranostic features of biomarkers 

(Figure 5). Omic data have been coupled with essentiality screens, including RNAi screening or the 

more accurate CRISPR-Cas9 screens.  
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Figure 5. From bottom to the top, this is the whole story of current efforts to find repositionable drug 

candidates for emerging disease. DBs, as the foundation of drug repositioning, can be created from 

various computational and experimental approaches. The second way of categorizing DBs (assay-

based classification) is depicted here as three in silico and three laboratory-based approaches in 

yellow gears to construct a DB. Afterwards, DBs can pave the way for various categorizations of 

systems medicine (shown in green gears) to decipher many probabilities in the case of disease 

mechanisms; disease stratification; therapy options; and diagnostic, prognostic, or theranostic 

features of biomarkers. 
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Several criteria are critical to facilitating DB usage in pharmaceutical science. First, one of the 

most important features of a database is that it has to be publicly available. Second, the availability 

of data after publication is another important criterion. Third, being updated in both data and 

interface aspects is crucial for drug discovery. Fourth, having an application programming interface 

(API) can help expert users to conveniently retrieve their required information, and many currently 

devise APIs to enable computational scientists to easily retrieve and analyze their data (e.g., LINCS 

L1000 and CheMBL). Fifth, data and metadata should be uniformly deposited and easily retrievable. 

Sixth, fully downloadable data are necessary for several experts to develop their own methods. 

LINCS L1000, ENCODE, TTD, and DSDB are instances of databases with data that are available to 

download. Seventh, internal tools such as the drug repositioning package of LINCS L1000 and SCYP 

can facilitate the use of databases. Eighth, advanced searches and queries increase the capabilities of 

databases, for instance, DrugDB and LINCS L1000 (Slicer, LINCS Canvas Browser, and L1000 

Viewer). Researchers can make use of the feature list and characterization provided here (Tables 1 

and S1, and Figure 2) as a starting point to identify suitable datasets and other information for their 

research purposes. 

Previously FDA-approved chemicals as drugs may be repurposed for new targets and their 

mode of action and side effects can be investigated. Systematic drug repurposing requires a 

comprehensive collection of all these small-molecule drugs. There are many comprehensive 

databases encompassing various data types, and integrated perspectives such as those given by the 

DrugBank may facilitate drug repositioning. Systems biology and systems medicine may assist in 

this effort by applying machine learning and integrative approaches to predict repurposable drugs 

based on data from different sources. In this case, method and algorithm development seems 

necessary to escalate the efficiency of in silico screenings.  

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/9/2694/s1: Table 

S1: An overview of all DBs discussed in this review in terms of the type of assay(s), data, and availability of 

content. 
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