Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications
Abstract
1. Introduction
2. Biosensing Principles and Techniques
2.1. Fundamentals of Biosensing
2.2. Common Sensing Modalities
2.2.1. Electrochemical Biosensing
2.2.2. Optical Biosensing
3. Types of Microneedles for Biosensing
4. Materials and Fabrication Strategies
4.1. Bulk Materials
4.2. Fabrication Techniques
5. Biomedical Applications
5.1. Glucose Sensing
MN Structure | Sensing Approach | Linear Range (mM) | Sensitivity | Validation | Ref |
---|---|---|---|---|---|
Stainless steel acupuncture needle/AuNP/Pt/GOx | Amperometric | 0–20 | 0.818 µA mM−1 | Benchtop PBS and benchtop clinical serum | [59] |
Stainless steel/Au/Prussian blue/GOx/Nafion | Amperometric | 0–15 | 77.7 nA mM−1 mm−2 | Human study, benchtop PBS | [51] |
3D-printed, PMMA + NSPANI/AuNPs | Amperometric | 1.5–14 | 1.51 µA mM−1 | In vitro ISF, gel skin model | [9] |
PUA/Au/GOx | Impedance | 2.8–11 | −27 Ω (mg dL−1) | Benchtop PBS | [52] |
Stainless steel/Au/CNT/Nafion/GOx/Polyurethane | Amperometric | 0–30 | ~1500 µA mM−1 | In vivo, closed-loop glucose measurement + insulin delivery in rats | [11] |
Stainless steel/Au/Pt/GOx/Polyurethane | Amperometric | 0–10 | 35.45–89.43 μA·mmol−1L−1 | Benchtop PBS solution, rats | [22] |
Photopolymer/Carbon/Prussian blue/MWCNT/Chitosan/GOx | Amperometric | 0–7 | 2.15 µA mM−1 | Benchtop PBS solution, agarose gel (simulated skin) | [60] |
5.2. ISF Biosensing Beyond Glucose
5.3. System-Level Integration of ISF Biosensors
5.4. Trends, Challenges, and Outlooks
6. Agricultural Applications
7. Emerging Application Areas of Conductive Microneedles
Radiofrequency Microneedles
8. Conclusions
8.1. Future Outlooks for ISF Biosensing
8.2. Future Outlooks for Agricultural Applications
Funding
Conflicts of Interest
References
- Yang, W.; Chen, Y.; Cheng, X.; Liu, S.; Zhu, H.; Hu, Y. Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection. Biosensors 2025, 15, 350. [Google Scholar] [CrossRef]
- Yang, X.; Huo, D.; Tian, Y.; Geng, X.; Xu, L.; Zhong, D.; Zhou, R.; Xu, S.; Zhang, Y.; Sun, L. AuNPs/GO/Pt Microneedle Electrochemical Sensor for in Situ Monitoring of Hydrogen Peroxide in Tomato Stems in Response to Wounding Stimulation. Anal. Bioanal. Chem. 2025, 417, 1067–1079. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Yu, C.; Wang, X.; Wang, J. Swellable Microneedle-Coupled Light-Addressable Photoelectrochemical Sensor for in-Situ Tracking of Multiple Pesticides Pollution in Vivo. J. Hazard. Mater. 2024, 470, 134216. [Google Scholar] [CrossRef]
- Tang, L.; Li, D.; Liu, W.; Tang, Y.; Zhang, R.; Tian, Y.; Tan, R.; Yang, X.; Sun, L. Microneedle Electrochemical Sensor Based on Disposable Stainless-Steel Wire for Real-Time Analysis of Indole-3-Acetic Acid and Salicylic Acid in Tomato Leaves Infected by Pst DC3000 in Situ. Anal. Chim. Acta 2024, 1316, 342875. [Google Scholar] [CrossRef]
- Lv, M.; Wang, L.; Hou, Y.; Qiao, X.; Luo, X. A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid. Anal. Chim. Acta 2025, 1339, 343610. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Shi, Z.; Cao, Y.; Wang, Y.; Lu, D.; Jiang, M.; Wang, Z.; Marty, J.L.; Zhu, Z. Development of an Osmosis-Assisted Hollow Microneedle Array Integrated with Dual-Functional Electrochemical Sensor for Urea and pH Monitoring in Interstitial Fluid. Sens. Actuators B Chem. 2025, 422, 136606. [Google Scholar] [CrossRef]
- Chen, L.; Ding, X.; Dong, Y.; Chen, H.; Gao, F.; Cui, B.; Zhao, X.; Cui, H.; Gu, X.; Zeng, Z. Integration of Catalytic Hairpin Assembly Probes into Microneedles for Detection of MicroRNA in Plants. Sens. Actuators B Chem. 2024, 404, 135277. [Google Scholar] [CrossRef]
- Kadian, S.; Sahoo, S.S.; Shukla, S.; Narayan, R.J. Development of 3D-Printed Conducting Microneedle-Based Electrochemical Point-of-Care Device for Transdermal Sensing of Chlorpromazine. J. Mater. Chem. B 2025, 13, 2114–2123. [Google Scholar] [CrossRef]
- Tawakey, S.H.; Mansour, M.; Soltan, A.; Salim, A.I. Early Detection of Hypo/Hyperglycemia Using a Microneedle Electrode Array-Based Biosensor for Glucose Ultrasensitive Monitoring in Interstitial Fluid. Lab. Chip 2024, 24, 3958–3972. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, S.; Chen, J.; Zhou, J.; Fan, K.; Pan, Y.; Ping, J. An Integrated Plant Glucose Monitoring System Based on Microneedle-Enabled Electrochemical Sensor. Biosens. Bioelectron. 2024, 248, 115964. [Google Scholar] [CrossRef]
- Huang, X.; Liang, B.; Huang, S.; Liu, Z.; Yao, C.; Yang, J.; Zheng, S.; Wu, F.; Yue, W.; Wang, J.; et al. Integrated Electronic/Fluidic Microneedle System for Glucose Sensing and Insulin Delivery. Theranostics 2024, 14, 1662–1682. [Google Scholar] [CrossRef]
- Wang, Q.; Molinero-Fernandez, Á.; Wei, Q.; Xuan, X.; Konradsson-Geuken, Å.; Cuartero, M.; Crespo, G.A. Intradermal Lactate Monitoring Based on a Microneedle Sensor Patch for Enhanced In Vivo Accuracy. ACS Sens. 2024, 9, 3115–3125. [Google Scholar] [CrossRef]
- Dervisevic, M.; Esser, L.; Chen, Y.; Alba, M.; Prieto-Simon, B.; Voelcker, N.H. High-Density Microneedle Array-Based Wearable Electrochemical Biosensor for Detection of Insulin in Interstitial Fluid. Biosens. Bioelectron. 2025, 271, 116995. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Y.; Sun, C.; Zhou, Z.; Zhang, J.; Xu, Y.; Xiao, X.; Deng, H.; Zhong, Y.; Li, G.; et al. Fully Integrated Wearable Microneedle Biosensing Platform for Wide-Range and Real-Time Continuous Glucose Monitoring. Acta Biomater. 2024, 175, 199–213. [Google Scholar] [CrossRef]
- Wang, Q.; Molinero-Fernández, Á.; Acosta-Motos, J.-R.; Crespo, G.A.; Cuartero, M. Unveiling Potassium and Sodium Ion Dynamics in Living Plants with an In-Planta Potentiometric Microneedle Sensor. ACS Sens. 2024, 9, 5214–5223. [Google Scholar] [CrossRef]
- Zhou, Y.; He, L.; Zhang, M.; Chen, M.; Wu, Y.; Liu, L.; Qi, L.; Zhang, B.; Yang, X.; He, X.; et al. An Aptamer-Responsive Microneedle Patch Sensor Platform Combining with Hybridization Chain Reaction Amplification for Detection of Steroid Hormone Cortisol in Skin Interstitial Fluid. Biosens. Bioelectron. 2025, 269, 116935. [Google Scholar] [CrossRef]
- Huang, X.-S.; Huang, S.; Zheng, S.-T.; Liang, B.-M.; Zhang, T.; Yue, W.; Liu, F.-M.; Shi, P.; Xie, X.; Chen, H.-J. Fabrication of Multiple-Channel Electrochemical Microneedle Electrode Array via Separated Functionalization and Assembly Method. Biosensors 2024, 14, 243. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Liang, Y.; Yang, J.; Lin, Y.; Li, Y. Microneedle-Based Electrochemical Array Patch for Ultra-Antifouling and Ultra-Anti-Interference Monitoring of Subcutaneous Oxygen. Anal. Chem. 2025, 97, 373–381. [Google Scholar] [CrossRef]
- Fan, C.-X.; Wang, Z.; Wang, Z.-H.; Wang, A.-W.; Wang, Z.-Y.; Huang, L. A Microneedle Sensor for in-Vivo Sodium Ion Detection in Plants. Anal. Chim. Acta 2025, 1352, 343892. [Google Scholar] [CrossRef]
- Haider, K.; Lijnse, T.M.; van de Panne, L.; Betancourt-Lee, C.; Lamb, A.; Dalton, C. Wire Bonded Solid Metal Microneedles: A Versatile Platform Technology for Transdermal Drug Delivery and Biosensing. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems XXIII, San Francisco, CA, USA, 25–31 January 2025; Volume 13312, pp. 49–61. [Google Scholar]
- Liu, Z.; Huang, X.; Liu, Z.; Zheng, S.; Yao, C.; Zhang, T.; Huang, S.; Zhang, J.; Wang, J.; Farah, S.; et al. Plug-In Design of the Microneedle Electrode Array for Multi-Parameter Biochemical Sensing in Gouty Arthritis. ACS Sens. 2025, 10, 159–174. [Google Scholar] [CrossRef]
- Huang, X.; Liang, B.; Zheng, S.; Wu, F.; He, M.; Huang, S.; Yang, J.; Ouyang, Q.; Liu, F.; Liu, J.; et al. Microarrow Sensor Array with Enhanced Skin Adhesion for Transdermal Continuous Monitoring of Glucose and Reactive Oxygen Species. Bio-Des. Manuf. 2024, 7, 14–30. [Google Scholar] [CrossRef]
- Ranamukhaarachchi, S.A.; Padeste, C.; Dübner, M.; Häfeli, U.O.; Stoeber, B.; Cadarso, V.J. Integrated Hollow Microneedle-Optofluidic Biosensor for Therapeutic Drug Monitoring in Sub-Nanoliter Volumes. Sci. Rep. 2016, 6, 29075. [Google Scholar] [CrossRef]
- Behnam, V.; McManamen, A.M.; Ballard, H.G.; Aldana, B.; Tamimi, M.; Milosavić, N.; Stojanovic, M.N.; Rubin, M.R.; Sia, S.K. mPatch: A Wearable Hydrogel Microneedle Patch for In Vivo Optical Sensing of Calcium. Angew. Chem. 2025, 64, e202414871. [Google Scholar] [CrossRef]
- Wu, X.; Pan, Y.; Li, X.; Shao, Y.; Peng, B.; Zhang, C.; Zhang, C.; Yao, S.; Ping, J.; Ying, Y. Rapid and In-Field Sensing of Hydrogen Peroxide in Plant by Hydrogel Microneedle Patch. Small 2024, 20, 2402024. [Google Scholar] [CrossRef]
- Gu, Z.; Zhao, D.; He, H.; Wang, Z. SERS-Based Microneedle Biosensor for In Situ and Sensitive Detection of Tyrosinase. Biosensors 2024, 14, 202. [Google Scholar] [CrossRef]
- Li, X.; Zhu, K.; Yan, B. Fluorescent Microneedle Sensors Based on Tb3+ @Hydrogen-Bonded Organic Frameworks for Real-Time Food Freshness Monitoring. Inorg. Chem. 2025, 64, 13918–13927. [Google Scholar] [CrossRef]
- Sang, M.; Cho, M.; Lim, S.; Min, I.S.; Han, Y.; Lee, C.; Shin, J.; Yoon, K.; Yeo, W.-H.; Lee, T.; et al. Fluorescent-Based Biodegradable Microneedle Sensor Array for Tether-Free Continuous Glucose Monitoring with Smartphone Application. Sci. Adv. 2023, 9, eadh1765. [Google Scholar] [CrossRef]
- Leanpolchareanchai, J.; Nuchtavorn, N. Wearable Microneedle-Based Colorimetric and Fluorescence Sensing for Transdermal Diagnostics. Talanta Open 2023, 8, 100247. [Google Scholar] [CrossRef]
- Huang, R.; Xu, Y.; Wan, P.; Zhu, T.; Heng, W.; Miao, W. Thylakoid-Based Green Preparation of Porous Microneedles for Antibiotic Residues Detection in Food Samples. Anal. Chim. Acta 2024, 1328, 343181. [Google Scholar] [CrossRef]
- Aldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815. [Google Scholar] [CrossRef]
- Downs, A.M.; Bolotsky, A.; Weaver, B.M.; Bennett, H.; Wolff, N.; Polsky, R.; Miller, P.R. Microneedle Electrochemical Aptamer-Based Sensing: Real-Time Small Molecule Measurements Using Sensor-Embedded, Commercially-Available Stainless Steel Microneedles. Biosens. Bioelectron. 2023, 236, 115408. [Google Scholar] [CrossRef]
- Wang, W.; Feng, R.; Wei, K.; Xu, J.; Dong, W.; Li, J.; Sun, J.; Wang, S.; Mao, X. An Integrated Colorimetric Biosensing Platform Containing Microneedle Patches and Aptasensor for Histamine Monitoring in Seafood. J. Hazard. Mater. 2025, 489, 137536. [Google Scholar] [CrossRef]
- Reynoso, M.; Chang, A.-Y.; Wu, Y.; Murray, R.; Suresh, S.; Dugas, Y.; Wang, J.; Arroyo-Currás, N. 3D-Printed, Aptamer-Based Microneedle Sensor Arrays Using Magnetic Placement on Live Rats for Pharmacokinetic Measurements in Interstitial Fluid. Biosens. Bioelectron. 2024, 244, 115802. [Google Scholar] [CrossRef]
- Zhang, P.; Dalton, C.; Jullien, G.A. Design and Fabrication of MEMS-Based Microneedle Arrays for Medical Applications. Microsyst. Technol. 2009, 15, 1073–1082. [Google Scholar] [CrossRef]
- Moawad, F.; Pouliot, R.; Brambilla, D. Dissolving Microneedles in Transdermal Drug Delivery: A Critical Analysis of Limitations and Translation Challenges. J. Control. Release 2025, 383, 113794. [Google Scholar] [CrossRef]
- Zhou, J.; Fan, P.; Zhou, S.; Pan, Y.; Ping, J. Machine Learning-Assisted Implantable Plant Electrophysiology Microneedle Sensor for Plant Stress Monitoring. Biosens. Bioelectron. 2025, 271, 117062. [Google Scholar] [CrossRef]
- Singh, N.; Zhang, Q.; Xu, W.; Whitham, S.A.; Dong, L. A Biohydrogel-Enabled Microneedle Sensor for In Situ Monitoring of Reactive Oxygen Species in Plants. ACS Sens. 2025, 10, 1797–1810. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Xiong, Y.; Zhang, X.; Chen, L.; Li, D.; Huang, C.; Yu, S.; Jia, X. A Smartphone-Enabled Colorimetric Microneedle Sensing Platform for Rapid Detection of Ascorbic Acid in Fruits. ACS Appl. Mater. Interfaces 2024, 16, 63941–63950. [Google Scholar] [CrossRef]
- Das, R.; Istif, E.; Cebecioglu, R.; Ali, M.; Atik, Y.; Dağ, Ç.; Celikbas, E.; Demirci, G.; Acar, F.; Hasanreisoğlu, M.; et al. Microneedles with Interdigitated Electrodes for In Situ Impedimetric VEGF Sensing. Adv. Mater. Interfaces 2025, 12, 2400789. [Google Scholar] [CrossRef]
- Maia, R.; Sousa, P.; Pinto, V.; Soares, D.; Lima, R.; Minas, G.; Rodrigues, R.O. PDMS Porous Microneedles Used as Engineered Tool in Advanced Microfluidic Devices and Their Proof-of-Concept for Biomarker Detection. Chem. Eng. J. 2024, 485, 149725. [Google Scholar] [CrossRef]
- Takeuchi, K.; Takama, N.; Kim, B.; Sharma, K.; Paul, O.; Ruther, P. Microfluidic Chip to Interface Porous Microneedles for ISF Collection. Biomed. Microdevices 2019, 21, 28. [Google Scholar] [CrossRef]
- Lima, R.A. The Impact of Polydimethylsiloxane (PDMS) in Engineering: Recent Advances and Applications. Fluids 2025, 10, 41. [Google Scholar] [CrossRef]
- Gonçalves, I.M.; Rodrigues, R.O.; Moita, A.S.; Hori, T.; Kaji, H.; Lima, R.A.; Minas, G. Recent Trends of Biomaterials and Biosensors for Organ-on-Chip Platforms. Bioprinting 2022, 26, e00202. [Google Scholar] [CrossRef]
- Haider, K.; Lijnse, T.; Shu, W.; O’Cearbhaill, E.; Dalton, C. From Microchips to Microneedles: Semiconductor Shear Testers as a Universal Solution for Transverse Load Analysis of Microneedle Mechanical Performance. J. Micromechanics Microengineering 2024, 34, 095006. [Google Scholar] [CrossRef]
- Carnicer-Lombarte, A.; Chen, S.-T.; Malliaras, G.G.; Barone, D.G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. [Google Scholar] [CrossRef]
- Mirzajani, H.; Urey, H. IDE-Integrated Microneedle Arrays as Fully Biodegradable Platforms for Wearable/Implantable Capacitive Biosensing. IEEE Sens. Lett. 2024, 8, 4500304. [Google Scholar] [CrossRef]
- Parrilla, M.; Steijlen, A.; Kerremans, R.; Jacobs, J.; den Haan, L.; De Vreese, J.; Van Noten Géron, Y.; Clerx, P.; Watts, R.; De Wael, K. Wearable Platform Based on 3D-Printed Solid Microneedle Potentiometric pH Sensor for Plant Monitoring. Chem. Eng. J. 2024, 500, 157254. [Google Scholar] [CrossRef]
- Li, R.; Liu, S.; Chen, L.; Huang, C.; Jia, X. A Smartphone-Integrated Coated Microneedle Sensor for In-Situ Extraction and Rapid Detection of Total Phenols in Fruits and Vegetables. Anal. Sens. 2025, 5, e202400114. [Google Scholar] [CrossRef]
- Dervisevic, M.; Harberts, J.; Sánchez-Salcedo, R.; Voelcker, N.H. 3D Polymeric Lattice Microstructure-Based Microneedle Array for Transdermal Electrochemical Biosensing. Adv. Mater. 2024, 36, e2412999. [Google Scholar] [CrossRef]
- Yang, Y.; Sheng, C.; Dong, F.; Liu, S. An Integrated Wearable Differential Microneedle Array for Continuous Glucose Monitoring in Interstitial Fluids. Biosens. Bioelectron. 2024, 256, 116280. [Google Scholar] [CrossRef]
- Piao, H.; Choi, Y.H.; Kim, J.; Park, D.; Lee, J.; Khang, D.Y.; Choi, H.J. Impedance-Based Polymer Microneedle Patch Sensor for Continuous Interstitial Fluid Glucose Monitoring. Biosens. Bioelectron. 2024, 247, 115932. [Google Scholar] [CrossRef] [PubMed]
- Nohgi, T.; Tu, Y.; Kawahira, H.; Kameoka, J. Microneedle Uric Acid Biosensor with Graphite Ink and Electrodeposited MWCNT. IEEE Sens. J. 2025, 25, 4143–4150. [Google Scholar] [CrossRef]
- Rosati, G.; Deroco, P.B.; Bonando, M.G.; Dalkiranis, G.G.; Cordero-Edwards, K.; Maroli, G.; Kubota, L.T.; Oliveira, O.N.; Saito, L.A.M.; De Carvalho Castro Silva, C.; et al. Introducing All-Inkjet-Printed Microneedles for in-Vivo Biosensing. Sci. Rep. 2024, 14, 29975. [Google Scholar] [CrossRef]
- Shirzadi, E.; Huynh, M.; GhavamiNejad, P.; Zheng, H.; Saini, A.; Bakhshandeh, F.; Keyvani, F.; Mantaila, D.; Rahman, F.A.; Quadrilatero, J.; et al. A PEDOT:PSS-Based Composite Hydrogel as a Versatile Electrode for Wearable Microneedle Sensing Platforms. Adv. Sens. Res. 2024, 3, 2300122. [Google Scholar] [CrossRef]
- Global Diabetes Data Report 2000–2045. Available online: https://diabetesatlas.org/data/ (accessed on 23 August 2024).
- Ashraf, G.; Ahmed, K.; Aziz, A.; Asif, M.; Kong, J.; Fang, X. Microneedle Wearables in Advanced Microsystems: Unlocking next-Generation Biosensing with AI. TrAC Trends Anal. Chem. 2025, 187, 118208. [Google Scholar] [CrossRef]
- Dul, M.; Alali, M.; Ameri, M.; Burke, M.D.; Creelman, B.P.; Dick, L.; Donnelly, R.F.; Eakins, M.N.; Frivold, C.; Forster, A.H.; et al. White Paper: Understanding, Informing and Defining the Regulatory Science of Microneedle-Based Dosage Forms That Are Applied to the Skin. J. Control. Release 2025, 378, 402–415. [Google Scholar] [CrossRef]
- Ming, T.; Lan, T.; Yu, M.; Duan, X.; Cheng, S.; Wang, H.; Deng, J.; Kong, D.; Yang, S.; Shen, Z. A Novel Electrochemical Microneedle Sensor for Highly Sensitive Real Time Monitoring of Glucose. Microchem. J. 2024, 207, 112021. [Google Scholar] [CrossRef]
- Luo, F.; Li, Z.; Shi, Y.; Sun, W.; Wang, Y.; Sun, J.; Fan, Z.; Chang, Y.; Wang, Z.; Han, Y.; et al. Integration of Hollow Microneedle Arrays with Jellyfish-Shaped Electrochemical Sensor for the Detection of Biomarkers in Interstitial Fluid. Sensors 2024, 24, 3729. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, Q.; Wang, Q.; Qiu, H.; Li, H.; Xu, T. Fully Integrated Microneedle Biosensor Array for Wearable Multiplexed Fitness Biomarkers Monitoring. Biosens. Bioelectron. 2024, 265, 116697. [Google Scholar] [CrossRef]
- Yang, B.; Wang, H.; Kong, J.; Fang, X. Long-Term Monitoring of Ultratrace Nucleic Acids Using Tetrahedral Nanostructure-Based NgAgo on Wearable Microneedles. Nat. Commun. 2024, 15, 1936. [Google Scholar] [CrossRef] [PubMed]
- Zouleh, R.S.; Rahimnejad, M.; Najafpour-Darzi, G.; Sabour, D. Design of a Microneedle-Based Enzyme Biosensor Using a Simple and Cost-Effective Electrochemical Strategy to Monitor Superoxide Anion Released from Cancer Cells. Anal. Biochem. 2025, 697, 115710. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, T.; Yang, T.; Cheng, H.; Cheng, Y.; Tsai, H.; Lo, Y.; Chen, Y.S. Real-Time Lactate Detection in A Dynamic Environment Using Micrsensing Needles. Adv. Sens. Res. 2025, 4, 2400089. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, W.; Chen, G.; Gao, T.; Gao, Z.; Peng, L.; Wang, L.; Cai, W. A High-Performance Wearable Microneedle Sensor Based on a Carboxylated Carbon Nanotube-Carbon Nanotube Composite Electrode for the Simultaneous Detection of Uric Acid and Dopamine. Microchem. J. 2024, 206, 111607. [Google Scholar] [CrossRef]
- Chipangura, Y.; Komal, M.; Brandao, V.S.M.; Sedmak, C.; Choi, J.S.; Swisher, S.L.; Bühlmann, P.; Stein, A. Nanoporous Carbon Materials as Solid Contacts for Microneedle Ion-Selective Sensors. ACS Appl. Mater. Interfaces 2024, 16, 44428–44439. [Google Scholar] [CrossRef]
- Wei, Q.; Rojas, D.; Wang, Q.; Zapata-Pérez, R.; Xuan, X.; Molinero-Fernández, Á.; Crespo, G.A.; Cuartero, M. Wearable 3D-Printed Microneedle Sensor for Intradermal Temperature Monitoring. ACS Sens. 2025, 10, 4027–4037. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Chen, Y.; Zhang, G.; Wang, Q.; Li, Y. Integrated Microneedles and Hydrogel Biosensor Platform: Toward a Diagnostic Device for Collection and Dual-Mode Sensing of Monkeypox Virus A29 Protein. Anal. Chem. 2025, 97, 1539–1545. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Li, C.; Lyu, M.; Xuan, X.; Li, H. Electrochemical Needle Sensor Based on a B, N Co-Doped Graphene Microelectrode Array for the on-Site Detection of Salicylic Acid in Fruits and Vegetables. Food Chem. 2024, 449, 139264. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Li, H. A Vertical/Horizontal Graphene-Based Microneedle Plant Sensor for on-Site Detection of Indole-3-Acetic Acid in Vegetables. Talanta 2025, 283, 127114. [Google Scholar] [CrossRef]
- Faraji Rad, Z. Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives. Adv. Eng. Mater. 2023, 25, 2201194. [Google Scholar] [CrossRef]
- Ece, E.; Eş, I.; Inci, F. Microneedle Technology as a New Standpoint in Agriculture: Treatment and Sensing. Mater. Today 2023, 68, 275–297. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Y.; Wang, J.; Liu, R.; Pan, D. In Situ Measurement of the Three-Dimensional Distribution of Labile Copper in Sediment Pore Water Using a Microneedle Sensor with Nanoporous Structure. J. Hazard. Mater. 2024, 476, 135182. [Google Scholar] [CrossRef]
- Maia, R.; Carvalho, V.; Lima, R.; Minas, G.; Rodrigues, R.O. Microneedles in Advanced Microfluidic Systems: A Systematic Review throughout Lab and Organ-on-a-Chip Applications. Pharmaceutics 2023, 15, 792. [Google Scholar] [CrossRef]
- Maia, R.F.; Machado, P.; Rodrigues, R.O.; Faustino, V.; Schütte, H.; Gassmann, S.; Lima, R.A.; Minas, G. Recent Advances and Perspectives of MicroNeedles for Biomedical Applications. Biophys. Rev. 2025, 17, 909–928. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Mysore, V.; Shah, S.; Malayanur, D.; Shivani, S.R. Physics of Fractional Microneedle Radiofrequency—A Review. J. Cutan. Aesthetic Surg. 2024, 17, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.G.; Khetarpal, S.; Dover, J.S. Radiofrequency Microneedling. Adv. Cosmet. Surg. 2022, 5, 17–25. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Albakr, L.; Zhang, Y.; Lu, A.; Chen, W.; Shao, T.; Zhu, L.; Yuan, H.; Yang, G.; et al. Microneedle-Enabled Therapeutics Delivery and Biosensing in Clinical Trials. J. Control. Release 2023, 360, 687–704. [Google Scholar] [CrossRef]
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University. A Single Center, Prospective Randomized Controlled Clinical Trial on the Efficacy and Safety of Microneedle Radiofrequency Combined With Oral Isotretinoin in Moderate to Severe Acne Vulgaris, 2024. Available online: https://clinicaltrials.gov (accessed on 10 August 2025).
- Lijnse, T.; Haider, K.; Lee, C.B.; Dalton, C. High Density Cleanroom-Free Microneedle Arrays for Pain-Free Drug Delivery. J. Micromech. Microeng. 2022, 33, 015005. [Google Scholar] [CrossRef]
- Haider, K.; Lijnse, T.M.; Betancourt-Lee, C.; Dalton, C. A Method for the Rapid Fabrication of Solid Metal Microneedles. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems XXI, San Francisco, CA, USA, 28 January–3 February 2023. [Google Scholar]
- Abedi, A.; Amin, M.; Amirat, C.; Athavale, J.; Baker, M.; Byrd, G.; Chard, K.; Coughlin, T.; Hajj, I.E.; Faraboschi, P. Technology Predictions 2025. Available online: https://ieeecs-media.computer.org/media/tech-news/tech-predictions-report-2025.pdf (accessed on 10 August 2025).
MN Type | Structure and Fabrication | Biosensing Applications | Advantages | Limitations | Ref |
---|---|---|---|---|---|
Solid MNs | - Monolithic structure (metal, silicon, or polymer) - Fabrication via photolithography and wet/dry etching techniques (silicon), micro-milling, electrochemical etching, laser cutting, or EDM (metals), or molding techniques and 3D printing (polymers) | - Electrochemical sensing (glucose, lactate, etc.) - Biosignal detection (EMG, ECG) - Plant/environmental sensing (nutrients, salt content) | - Strong mechanical properties - Straightforward fabrication and surface functionalization - Suitable for real-time in situ measurements | - Potential for local irritation/inflammatory response - Rigid materials may not be optimal for long-term implantation due to mechanical property mismatch with soft tissues amplifying the foreign body response | [17,34] |
Coated-Solid MNs | - Robust base microneedle (polymer, silicon, or metal) with a thin conductive or functional layer - Coated by methods like sputtering, electroplating, chemical vapor deposition, dip or drop coating | - Electrochemical sensors (amperometric, potentiometric, impedimetric) - Wearable diagnostics (flexible patches) | - Combines mechanical strength (core) with conductive properties (coating) - Broad biocompatibility and surface functionalization options | - Risk of delamination or corrosion of the coating causing performance degradation over time - Mechanical properties may not be as robust as a monolithic structure | [15,20] |
Hollow MNs | - Central lumen for fluid extraction or injection, or housing conductive wires for sensing - Multi-step etching or molding processes using silicon, glass, metals, or polymers | - Fluid sampling and off-board or on-chip analysis - Real-time measurements in integrated lab-on-a-chip systems | - Precise, minimally invasive fluid handling - Enables continuous sampling for biomarker monitoring | - Complex fabrication to maintain both sharpness and structural integrity - Potential for lumen clogging by debris | [32,35] |
Dissolvable MNs | - Water-soluble or biodegradable polymers - Fabricated via micromolding or droplet-born air blowing | - Historically limited in biosensing and primarily used for drug or vaccine delivery | - Simpler fabrication processes can facilitate mass production - Single-step application - Reduced waste and lower risk of needlestick injuries | - Unsuitable for continuous real-time or repeated sensing | [36] |
Hydrogel MNs | - Swellable polymer networks (e.g., polyvinyl alcohol, polyacrylamide) - Typically fabricated via micromolding processes | - In situ analyte collection via swelling - On-chip analysis with integrated electronics - Optical detection methods | - Potential for simple visual readouts (colorimetric) - Generally soft and less traumatic to tissues | - Lower mechanical strength than solid MNs - Ensuring uniform analyte absorption and MN swelling across an array can be challenging | [24,25] |
Fabrication Method | Microneedle Type | Materials | Applications | Ref |
---|---|---|---|---|
3D Printing (e.g., 2PP) | Solid, Hollow | PLA, PMMA, polymer resins | Glucose sensing, chlorpromazine sensing, pH monitoring | [8,9,47,48] |
Molding | Solid | PLA, PDMS, GelMA | Vascular endothelial growth factor (VEGF) sensing, phenols detection, ascorbic acid | [13,40,49,50] |
Laser Cutting or Micromachining | Solid, Hollow | Metals (stainless steel), polymers (PMMA) | Glucose sensing, pH sensing, multiplexed sensing, plant stress monitoring | [11,17,37,51] |
Photolithography and wet/dry etching techniques | Solid | Silicon, noble metals (Au, Pt, etc.) | Glucose sensing, creating master molds | [52] |
Inkjet Printing (onto polymer or metal base MNs) | Solid | Silver or carbon inks | Uric acid sensing, plant sensing | [53,54] |
Hydrogel Casting | Hydrogel | PEGDA/pAAM, MeHA, PEDOT:PSS-based composite hydrogels | Calcium sensing, pesticide detection, hydrogen peroxide detection | [24,25,55] |
Analyte(s) | MN Type or Material | Sensing Approach | Linear Range | Sensitivity | Validation | Ref |
---|---|---|---|---|---|---|
Lactate | Stainless steel needle/NiOx | Amperometric (non-enzymatic) | 0.1–10 mM | 0.5–3.38 μA·mM−1·mm−2 | Benchtop PBS solution | [64] |
Lactate | Stainless steel needles/Carbon/Chitosan/Lactate Oxidase | Amperometric | 0.25–35 mM | −8.04 nA/mM | Rats | [12] |
Urea, pH | Hollow MNs with MgCl2 lumen coating | Amperometric and potentiometric | Urea: 0–30 mM, pH: 4.7–8.6 | −18.64 μA/mM (Urea), −52.82 mV/pH | Rats | [6] |
Cortisol | MeHA swellable MN | Fluorescence | 0.05–10 µM | 4862.1 a.u./μM | Mice | [16] |
Insulin | Polymer base MN + Au coating | Impedance | 0.01–4 nM | 65 Ω/nM | Mice | [13] |
Vascular endothelial growth factor (VEGF) | PLA MN/Au Coated/functionalized with anti-VEGF antibodies | Impedance | 100–1000 pg/mL | 0.47 nF−1pg−1mL−1 | Benchtop, ex vivo rat skin | [40] |
Chlorpromazine | 3D-printed bio resin (Boston Micro Fab)/Carbon ink | Amperometric | 5–120 µM | 2.65 μA/mM | Parafilm skin model + artificial ISF | [8] |
Superoxide | Au MN + reduced Graphene Oxide/YHCF | Amperometric | 0.304–314 μM | 0.17 nA/μM | Cancer-cell spheroids | [63] |
Oxygen | Au-coated acupuncture MN | Amperometric | 6–150 mmHg | 0.3817 μA/mmHg | Human treadmill | [18] |
UA, ROS, pH | Stainless steel MNs/Au/uricase | Amperometric and potentiometric | UA: 0–0.6 mM; ROS: 0–600 µM | 0.648 μA/mM (UA), 1.810 μA/mM (ROS) | Rats | [21] |
UA + Dopamine (DA) | Organosilicon-modified acrylic resin/CCNT/CNT | Amperometric | UA: 5–600 µM; DA: 2–200 µM | 7.13 μA μM−1 cm−2 (UA), 13.31 μA μM−1 cm−2 (DA) | Human ISF (alcohol consumption study) | [65] |
UA | Polyvinyl alcohol MNs/carbon paste/uricase + antimicrobial coating | Amperometric | 0.5 µM–2.5 µM and 9.6 µM–2.15 mM | 0.07 µA/µM | Mice | [5] |
Tyrosinase | Steel MN + Au/Ag nanoparticles | Surface-enhanced Raman spectroscopy | 0.05–200 U mL−1 | 1855.90 a.u./(U/mL) | Ex vivo pig skin | [26] |
K+, pH | Au-coated steel + nanoporous carbon | Potentiometric | K+: 0.1–100 mM; pH: 2–12 | 60 mV/decade (K+), −54.7 mV/decade (pH) | Benchtop PBS | [66] |
Ca2+ | PEGDA/PAA hydrogel | Fluorescence | 0–2 mM | Not reported | Rats | [24] |
Temperature | Acrylate resin/PEDOT:PSS | Thermistor | 20–40 °C | −0.74% °C−1 | Simulated skin, rats | [67] |
Challenge | Mitigation Strategies in the Recent Literature | Remaining Needs |
---|---|---|
Biofouling and inflammation | Antifouling coatings on MNs | Days-to-weeks scale in vivo studies |
Calibration and lag time characterization | Empirical time-based corrections of measured values | Physics-based diffusion models, adaptive on-device machine learning |
Reference electrode integration | Ag/AgCl-coated microneedles, solid-state quasi-references | Long-term reference electrode stability characterization after sterilization and in biological environments |
Standardized testing | Recent efforts to develop standardized test methods by groups like the MAP-RWG [58] | Standardized protocols specific to the evaluation of microneedle sensors, including both electrical tests and mechanical tests like lateral failure forces. |
Biomarker Detected | Microneedle Type | Microneedle Material | Sensing Approach | Ref |
---|---|---|---|---|
Indole-3-acetic acid | Solid | Graphene + Pt and Ti microelectrodes | Differential pulse voltammetry | [70] |
Hydrogen peroxide | Solid | AuNPs/Graphene oxide/Pt | Chronoamperometry | [2] |
Glucose | Hollow | Platinum wire + AuNPs + Nafion + GOx + PU | Amperometry | [10] |
MicroRNA | Hydrogel | Methacrylated hyaluronic acid | Fluorescence | [7] |
Indole-3-acetic acid and Salicylic acid | Solid | Stainless steel wire + MWCNTs | Differential pulse voltammetry and chronoamperometry | [4] |
Hydrogen Peroxide | Hydrogel | PEG-crosslinked PMVE/MA | Colorimetric | [25] |
K+ and Na+ | Solid | Stainless steel + carbon ink (WE) + Ag/AgCl ink (RE) + ion-selective membranes | Potentiometry | [15] |
pH | Solid | 3D-printed polymer + Au | Potentiometry | [48] |
Salicylic acid | Solid | BNVG + Pt and Ti microelectrodes | Differential pulse voltammetry | [69] |
Na+ | Solid | Stainless steel + PEDOT:PSS + ion-selective membrane | Potentiometry | [19] |
Hydrogen Peroxide | Solid | Au + HRP/Cs-rGO hydrogel | Chronoamperometry | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, K.; Dalton, C. Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications. Micromachines 2025, 16, 929. https://doi.org/10.3390/mi16080929
Haider K, Dalton C. Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications. Micromachines. 2025; 16(8):929. https://doi.org/10.3390/mi16080929
Chicago/Turabian StyleHaider, Kazim, and Colin Dalton. 2025. "Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications" Micromachines 16, no. 8: 929. https://doi.org/10.3390/mi16080929
APA StyleHaider, K., & Dalton, C. (2025). Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications. Micromachines, 16(8), 929. https://doi.org/10.3390/mi16080929