Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels
Abstract
1. Introduction
2. Methods
2.1. Geometric Model
2.2. Computational Models
2.3. Boundary Conditions
2.4. Evaluation Method
2.5. Grid Independence Verification and Validation of Validity
3. Results and Discussion
3.1. Effects of Channel Diameter and Velocity on Mixing
3.2. Effects of Channel Shape on Mixing
3.3. Effects of Channel Contraction Ratio and Expansion Ratio on Mixing
3.4. Effects of the Number of Expansion Units on Mixing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ammar, H.; El Zoghbi, B.; Khaled, M.; Faraj, J. Enhanced micromixer designs for chemical applications-Numerical simulations and analysis. Chem. Eng. Process.-Process Intensif. 2025, 208, 110098. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Liu, B.F. Micromixers and their applications in kinetic analysis of biochemical reactions. Talanta 2019, 205, 120136. [Google Scholar] [CrossRef] [PubMed]
- Hazeri, A.H.; Abouei Mehrizi, A.; Mohseni, S.S.; Warkiani, M.E.; Bazaz, S.R. A novel strategy for square-wave micromixers: A survey of RBC lysis for further biological analysis. Ind. Eng. Chem. Res. 2023, 62, 16215–16224. [Google Scholar] [CrossRef]
- Anaya, B.J.; Kara, A.; Raposo, R.; Tirado, D.F.; Lalatsa, A.; Burgos, E.G.; Serrano, D.R. Integration of 3D-printed micromixers and spray drying for pulmonary delivery of antimicrobial microparticles. Int. J. Pharm. 2025, 674, 125493. [Google Scholar] [CrossRef]
- Jia, X.; Wang, W.; Han, Q.; Wang, Z.; Jia, Y.; Hu, Z. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery. ACS Med. Chem. Lett. 2016, 7, 429–434. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Sayyah, A.; Hazeri, A.H.; Salomon, R.; Mehrizi, A.A.; Warkiani, M.E. Micromixer research trend of active and passive designs. Chem. Eng. Sci. 2024, 293, 120028. [Google Scholar] [CrossRef]
- Fu, L.M.; Ju, W.J.; Tsai, C.H.; Hou, H.H.; Yang, R.J.; Wang, Y.N. Chaotic vortex micromixer utilizing gas pressure driving force. Chem. Eng. J. 2013, 214, 1–7. [Google Scholar] [CrossRef]
- Liu, G.; Wang, M.; Li, P.; Sun, X.; Dong, L.; Li, P. A micromixer driven by two valveless piezoelectric pumps with multi-stage mixing characteristics. Sens. Actuators A Phys. 2022, 333, 113225. [Google Scholar] [CrossRef]
- Azimi, N.; Rahimi, M.; Zangenehmehr, P. Numerical Study of Mixing and Mass Transfer in a Micromixer by Stimulation of Magnetic Nanoparticles in a Magnetic Field. Chem. Eng. Technol. 2021, 44, 1084–1093. [Google Scholar] [CrossRef]
- Li, T.; Yang, C.; Shao, Z.; Chen, Y.; Zheng, J.; Yang, J.; Hu, N. Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers. Biosensors 2024, 14, 408. [Google Scholar] [CrossRef]
- Nan, K.; Shi, Y.; Zhao, T.; Tang, X.; Zhu, Y.; Wang, K.; Bai, J.; Zhao, W. Mixing and Flow Transition in an Optimized Electrokinetic Turbulent Micromixer. Anal. Chem. 2022, 94, 12231–12239. [Google Scholar] [CrossRef]
- Ding, H.; Zhong, X.; Liu, B.; Shi, L.; Zhou, T.; Zhu, Y. Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field. Microfluid. Nanofluid. 2021, 25, 26. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, T.; Liu, X. Effect of complex vortices generated by asymmetrically distributed induced charges on fluid flow and mass transfer in pressure driven micromixers. Chaos Solitons Fractals 2025, 196, 116373. [Google Scholar] [CrossRef]
- Faradonbeh, V.R.; Rabiei, S.; Rabiei, H.; Goodarzi, M.; Safaei, M.R.; Lin, C. Power-law fluid micromixing enhancement using surface acoustic waves. J. Mol. Liq. 2022, 347, 117978. [Google Scholar] [CrossRef]
- Bai, C.; Tang, X.; Li, Y.; Arai, T.; Huang, Q.; Liu, X. Acoustohydrodynamic micromixers: Basic mixing principles, programmable mixing prospectives, and biomedical applications. Biomicrofluidics 2024, 18, 021505. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Cai, Y.; Wang, B.; Luo, X. A cost-effective serpentine micromixer utilizing ellipse curve. Anal. Chim. Acta 2021, 1155, 338355. [Google Scholar] [CrossRef]
- Raza, W.; Hossain, S.; Kim, K.Y. Effective mixing in a short serpentine split-and-recombination micromixer. Sens. Actuators B Chem. 2018, 258, 381–392. [Google Scholar] [CrossRef]
- Mehrdel, P.; Karimi, S.; Farré-Lladós, J.; Casals-Terré, J. Novel Variable Radius Spiral–Shaped Micromixer: From Numerical Analysis to Experimental Validation. Micromachines 2018, 9, 552. [Google Scholar] [CrossRef]
- Rahbarshahlan, S.; Ghaffarzadeh Bakhshayesh, A.; Rostamzadeh Khosroshahi, A.; Aligholami, M. Interface study of the fluids in passive micromixers by altering the geometry of inlets. Microsyst. Technol. 2021, 27, 2791–2802. [Google Scholar] [CrossRef]
- Xu, J.; Chen, X. Mixing performance of a fractal-like tree network micromixer based on Murray’s law. Int. J. Heat Mass Transf. 2019, 141, 346–352. [Google Scholar] [CrossRef]
- Khan, M.A.; Suhaib, M.; Ansari, M.A. Investigations on fluid flow and mixing in fractal tree like biomimetic microchannel based on Murray’s law. Chem. Eng. Process.-Process Intensif. 2023, 194, 109564. [Google Scholar] [CrossRef]
- Zhan, X.; Jing, D. Influence of geometric parameters on the fluidic and mixing characteristics of T-shaped micromixer. Microsyst. Technol. 2020, 26, 2989–2996. [Google Scholar] [CrossRef]
- Shi, X.; Huang, S.; Wang, L.; Li, F. Numerical analysis of passive micromixer with novel obstacle design. J. Dispers. Sci. Technol. 2021, 42, 440–456. [Google Scholar] [CrossRef]
- Tajik Ghanbari, T.; Rahimi, M.; Ranjbar, A.A.; Pahamli, Y.; Torbatinejad, A. Mixing performance improvement of T-shaped micromixer using novel structural design of channel and obstacles. Phys. Fluids 2023, 35, 122013. [Google Scholar] [CrossRef]
- Lv, H.; Chen, X.; Wang, X.; Zeng, X.; Ma, Y. A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis. Int. J. Heat Mass Transf. 2022, 183, 122159. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Liang, C.; Deng, X.; Xu, W. Grey Relationship optimization based structural design Inspired by Cantor fractals for micromixers in nanoliposome preparation. Chem. Eng. Sci. 2025, 308, 121403. [Google Scholar] [CrossRef]
- ZHAO, X.; MA, H.; LI, P. Simulation analysis and optimal design of mixing performance of staggered collision type micromixer. Chem. Ind. Eng. Prog. 2023, 42, 4559–4572. [Google Scholar]
- Oh, S.Y.; Lee, C.S. Comparison and Analysis of Mixing Efficiency in Various Micromixer Designs. Korean J. Chem. Eng. 2024, 41, 2449–2458. [Google Scholar] [CrossRef]
- Yousefi, H.; Akar, S.; Niazmand, H.; Shaegh, S. Improvement of mixing efficiency in twisted micromixers: The impact of cross-sectional shape and eccentricity ratio. Chem. Eng. Process.-Process Intensif. 2024, 205, 11006. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, X. Numerical simulation of gas-liquid two-phase flow in a T-shaped multi-branch pipe. J. Liaoning Univ. Petrochem. Technol. 2021, 41, 65–72. [Google Scholar]
- Liu, R.H.; Stremler, M.A.; Sharp, K.V.; Olsen, M.; Santiago, J.; Adrian, R.; Aref, H.; Beebe, D. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 2000, 9, 190–197. [Google Scholar] [CrossRef]
- Fu, H.; Ou, P.; Zhu, J.; Song, P.; Yang, J.; Wu, Y. Enhanced Protein Adsorption in Fibrous Substrates Treated with Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 7626–7636. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, X.J.; Li, Z.; Lin, C.H.; Wang, C.W.Q.; Jiao, K.; Xu, J.; Pan, H.X.; Wu, Y. Synthesis of Holmium-Oxide Nanoparticles for Near-Infrared Imaging and Dye-Photodegradation. Molecules 2022, 27, 3522. [Google Scholar] [CrossRef]
- Wu, Y.; Ou, P.; Fronczek, F.R.; Song, J.; Lin, Y.; Wen, H.M.; Xu, J. Simultaneous Enhancement of Near-Infrared Emission and Dye Photodegradation in a Racemic Aspartic Acid Compound via Metal-Ion Modification. ACS Omega 2019, 4, 19136–19144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Hang, Y.; Liu, R.; Li, Z.; Wu, Y. Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels. Micromachines 2025, 16, 1001. https://doi.org/10.3390/mi16091001
Yang L, Hang Y, Liu R, Li Z, Wu Y. Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels. Micromachines. 2025; 16(9):1001. https://doi.org/10.3390/mi16091001
Chicago/Turabian StyleYang, Lijun, Yu Hang, Renjie Liu, Zongan Li, and Ye Wu. 2025. "Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels" Micromachines 16, no. 9: 1001. https://doi.org/10.3390/mi16091001
APA StyleYang, L., Hang, Y., Liu, R., Li, Z., & Wu, Y. (2025). Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels. Micromachines, 16(9), 1001. https://doi.org/10.3390/mi16091001