Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow
Abstract
1. Introduction
2. Results of Simulation Model of Microfluidic Motors Actuated by ICEO Whirling Flow
2.1. Design of Microfluidic Motors
2.2. Computational Model
2.2.1. AC-FFET-Modulated ICEO Whirling Flow
2.2.2. Rotation of Microfluidic Motors
2.3. Detection of Low-Abundance Proteins
3. Simulation Analysis of Microfluidic Motor Rotation Actuated by ICEO Whirling Flow
3.1. Modulation Effect of AC-FFET on ICEO Streaming for the Formation of Whirling Flow
3.2. Influence of Blade Numbers on the Performance of Microfluidic Motors
3.3. Effect of Blade Length on the Rotation Performance of Microfluidic Motors
3.4. Influence of Electric Field on the Rotation Performance of Microfluidic Motors
4. Simulation Analysis of Protein Detection with Microfluidic Motors Actuated by ICEO Whirling Flow
4.1. Validation of Detection Capability of Microfluidic Motors Actuated by ICEO Whirling Flow by Numerical Simulations
4.2. Simulation Analysis of Protein Detection Under Diverse Concentrations
4.3. Simulation Analysis of Modulation Effect of Potential Drops on the Detection Performance of Microfluidic Motors
4.4. Discussion of the Possibility of Prototyping Microfluidic Motors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, Z.; Prieto, D.; Conrads, T.P.; Veenstra, T.D.; Issaq, H.J. Proteomic patterns: Their potential for disease diagnosis. Mol. Cell. Endocrinol. 2005, 230, 95–106. [Google Scholar] [CrossRef]
- Westermeier, R.; Marouga, R. Protein Detection Methods in Proteomics Research. Biosci. Rep. 2005, 25, 19–32. [Google Scholar] [CrossRef]
- Jing, W.; Min, G. Microfluidic sensing: State of the art fabrication and detection techniques. J. Biomed. Opt. 2011, 16, 080901. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Reis, N.M. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2017, 142, 858–882. [Google Scholar] [CrossRef]
- Schmidt-Speicher, L.M.; Länge, K. Microfluidic integration for electrochemical biosensor applications. Curr. Opin. Electrochem. 2021, 29, 100755. [Google Scholar] [CrossRef]
- Benz, C.; Retzbach, H.; Nagl, S.; Belder, D. Protein–protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection. Lab A Chip 2013, 13, 2808–2814. [Google Scholar] [CrossRef] [PubMed]
- Challa, P.K.; Peter, Q.; Wright, M.A.; Zhang, Y.; Saar, K.L.; Carozza, J.A.; Benesch, J.L.P.; Knowles, T.P.J. Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices. Anal. Chem. 2018, 90, 3849–3855. [Google Scholar] [CrossRef]
- Ouellet, E.; Lausted, C.; Lin, T.; Yang, C.W.T.; Hood, L.; Lagally, E.T. Parallel microfluidic surface plasmon resonance imaging arrays. Lab A Chip 2010, 10, 581–588. [Google Scholar] [CrossRef]
- Wang, Z.; Wilkop, T.; Xu, D.; Dong, Y.; Ma, G.; Cheng, Q. Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal. Bioanal. Chem. 2007, 389, 819–825. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Tseng, F.G. Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis. Biomicrofluidics 2018, 12, 011502. [Google Scholar] [CrossRef] [PubMed]
- Perozziello, G.; Candeloro, P.; Gentile, F.; Coluccio, M.L.; Tallerico, M.; De Grazia, A.; Nicastri, A.; Perri, A.M.; Parrotta, E.; Pardeo, F.; et al. A microfluidic dialysis device for complex biological mixture SERS analysis. Microelectron. Eng. 2015, 144, 37–41. [Google Scholar] [CrossRef]
- Saha, A.; Jana, N.R. Paper-Based Microfluidic Approach for Surface-Enhanced Raman Spectroscopy and Highly Reproducible Detection of Proteins beyond Picomolar Concentration. ACS Appl. Mater. Interfaces 2015, 7, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, H.E.; Wu, L.J.; Zheng, A.X.; Chen, G.N.; Yang, H.H. General Colorimetric Detection of Proteins and Small Molecules Based on Cyclic Enzymatic Signal Amplification and Hairpin Aptamer Probe. Anal. Chem. 2012, 84, 5309–5315. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gao, T.; Lei, L.; Yang, D.; Mao, X.; Li, G. Colorimetric detection of proteins based on target-induced activation of aptazyme. Anal. Chim. Acta 2016, 942, 68–73. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Z.; Shi, J.; Liu, Y.; Song, Z.; Wu, C.; Su, L.; Zhang, Z.; Zhao, Y. Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies. Anal. Chim. Acta 2025, 1337, 343569. [Google Scholar] [CrossRef]
- Chen, X.; Shen, M.; Liu, S.; Wu, C.; Sun, L.; Song, Z.; Shi, J.; Yuan, Y.; Zhao, Y. Microfluidic impedance cytometry with flat-end cylindrical electrodes for accurate and fast analysis of marine microalgae. Lab A Chip 2024, 24, 2058–2068. [Google Scholar] [CrossRef]
- Luo, X.; Davis, J.J. Electrical Biosensors and the Label Free Detection of Protein Disease Biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962. [Google Scholar] [CrossRef]
- Wang, J.; Yau, S.T. Field-effect amperometric immuno-detection of protein biomarker. Biosens. Bioelectron. 2011, 29, 210–214. [Google Scholar] [CrossRef]
- Haghayegh, F.; Salahandish, R.; Zare, A.; Khalghollah, M.; Sanati-Nezhad, A. Immuno-biosensor on a chip: A self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins. Lab A Chip 2022, 22, 108–120. [Google Scholar] [CrossRef]
- Bogomolova, A.; Komarova, E.; Reber, K.; Gerasimov, T.; Yavuz, O.; Bhatt, S.; Aldissi, M. Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing. Anal. Chem. 2009, 81, 3944–3949. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, A.S.; Hamzah, R.; Hoettges, K.F.; Hughes, M.P. A dielectrophoresis-impedance method for protein detection and analysis. AIP Adv. 2017, 7, 015202. [Google Scholar] [CrossRef]
- Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, J.Q.; Li, Y.T.; Huang, L.; Pang, D.W.; Ning, Y.; Huang, W.H.; Zhang, Z.; Zhang, G.J. Photocatalysis-Induced Renewable Field-Effect Transistor for Protein Detection. Anal. Chem. 2016, 88, 4048–4054. [Google Scholar] [CrossRef]
- Yang, M.; Chao, T.C.; Nelson, R.; Ros, A. Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 1681–1689. [Google Scholar] [CrossRef]
- Figeys, D.; Gygi, S.P.; McKinnon, G.; Aebersold, R. An Integrated Microfluidics-Tandem Mass Spectrometry System for Automated Protein Analysis. Anal. Chem. 1998, 70, 3728–3734. [Google Scholar] [CrossRef] [PubMed]
- Pedde, R.D.; Li, H.; Borchers, C.H.; Akbari, M. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends Biotechnol. 2017, 35, 954–970. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Hu, X.G.; Liu, T.; Shen, M.; Peng, Y.; Hu, S.; Zhao, Y. Enrichment and selection of particles through parallel induced-charge electro-osmotic streaming for detection of low-abundance nanoparticles and targeted microalgae. Anal. Chem. 2023, 95, 11714–11722. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.; Zeng, J.; Li, X.; Chuai, R. A Genosensor Based on the Modification of a Microcantilever: A Review. Micromachines 2023, 14, 427. [Google Scholar] [CrossRef]
- Kabir, H.; Merati, M.; Abdekhodaie, M.J. Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19. J. Med. Eng. Technol. 2021, 45, 423–433. [Google Scholar] [CrossRef]
- Di Pietrantonio, F.; Cannatà, D.; Benetti, M.; Verona, E.; Varriale, A.; Staiano, M.; D’Auria, S. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens. Bioelectron. 2013, 41, 328–334. [Google Scholar] [CrossRef]
- Huang, Y.; Das, P.K.; Bhethanabotla, V.R. Surface acoustic waves in biosensing applications. Sens. Actuators Rep. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Länge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review. Anal. Chim. Acta 2021, 1164, 338321. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Shen, M.; Shi, J.; Wu, C.; Song, Z.; Zhao, Y. Dielectrophoretic characterization and selection of non-spherical flagellate algae in parallel channels with right-angle bipolar electrodes. Lab A Chip 2024, 24, 2506–2517. [Google Scholar] [CrossRef]
- Dong, J.; Ueda, H. ELISA-type assays of trace biomarkers using microfluidic methods. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1457. [Google Scholar] [CrossRef] [PubMed]
- Eteshola, E.; Leckband, D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens. Actuators B Chem. 2001, 72, 129–133. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Ping, J.; Jing, S.; Ying, Y. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection. Biosens. Bioelectron. 2014, 59, 106–111. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, L.; Huang, M.; Song, J.; Zhang, H.; Song, Y.; Wang, W.; Yang, C. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC Trends Anal. Chem. 2019, 117, 69–77. [Google Scholar] [CrossRef]
- Lee, M.H.; Ahluwalia, A.; Hsu, K.M.; Chin, W.T.; Lin, H.Y. Extraction of alpha-fetoprotein (AFP) with magnetic albuminoid-imprinted poly (ethylene-co-vinyl alcohol) nanoparticles from human hepatocellular carcinoma HepG2 cellular culture medium. RSC Adv. 2014, 4, 36990–36995. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Squires, T.M. Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 2004, 92, 066101. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M.; Bazant, M.Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 2006, 560, 65–101. [Google Scholar] [CrossRef]
- Mok, J.; Mindrinos, M.N.; Davis, R.W.; Javanmard, M. Digital microfluidic assay for protein detection. Proc. Natl. Acad. Sci. USA 2014, 111, 2110–2115. [Google Scholar] [CrossRef]
- Metzler, L.; Rehbein, U.; Schonberg, J.N.; Brandstetter, T.; Thedieck, K.; Ruhe, J. Breaking the Interface: Efficient Extraction of Magnetic Beads from Nanoliter Droplets for Automated Sequential Immunoassays. Anal. Chem. 2020, 92, 10283–10290. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, Y.A.; Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications. Chem. Soc. Rev. 2010, 39, 912–922. [Google Scholar] [CrossRef]
- Shen, L.; Tian, Z.; Yang, K.; Rich, J.; Xia, J.; Upreti, N.; Zhang, J.; Chen, C.; Hao, N.; Pei, Z.; et al. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat. Commun. 2024, 15, 9059. [Google Scholar] [CrossRef]
- Chai, H.; Zhu, J.; Feng, Y.; Liang, F.; Wu, Q.; Ju, Z.; Huang, L.; Wang, W. Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics. Adv. Mater. 2024, 36, e2310212. [Google Scholar] [CrossRef]
- Li, G.; Xu, B.; Wang, X.; Yu, J.; Zhang, Y.; Fu, R.; Yang, F.; Gu, H.; Huang, Y.; Chen, Y.; et al. Crossing the Dimensional Divide with Optoelectronic Tweezers: Multicomponent Light-Driven Micromachines with Motion Transfer in Three Dimensions. Adv. Mater. 2025, 37, 2417742. [Google Scholar] [CrossRef] [PubMed]
Method | Detection Limit | Detection Time | References |
---|---|---|---|
Electrochemical | ~50–100 pM | ~1 h | [44] |
Magnetic Bead Immunocapture | ~25–800 pM | ~30 min | [45] |
Ion Concentration Polarization | <40 pM | ~20–60 min | [46] |
This work | <1 pM (Theoretical) | ~30 s | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Song, Z.; Chen, X.; Bai, Z.; Yu, J.; Ye, Q.; Yang, Z.; Qiao, J.; Ma, S.; Zhang, K. Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow. Micromachines 2025, 16, 895. https://doi.org/10.3390/mi16080895
Shi J, Song Z, Chen X, Bai Z, Yu J, Ye Q, Yang Z, Qiao J, Ma S, Zhang K. Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow. Micromachines. 2025; 16(8):895. https://doi.org/10.3390/mi16080895
Chicago/Turabian StyleShi, Jishun, Zhipeng Song, Xiaoming Chen, Ziang Bai, Jialin Yu, Qihang Ye, Zipeng Yang, Jianru Qiao, Shuhua Ma, and Kailiang Zhang. 2025. "Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow" Micromachines 16, no. 8: 895. https://doi.org/10.3390/mi16080895
APA StyleShi, J., Song, Z., Chen, X., Bai, Z., Yu, J., Ye, Q., Yang, Z., Qiao, J., Ma, S., & Zhang, K. (2025). Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow. Micromachines, 16(8), 895. https://doi.org/10.3390/mi16080895