A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points
Abstract
1. Introduction
- (1)
- M3DHE-ICP is proposed to significantly improve the consistency of multi-view point cloud stitching by introducing a refined correction process based on the ICP (iterative closest point) algorithm, which compensates for residual errors caused by calibration and 3D sensor measurement inaccuracies. The average Euclidean distance errors in fitting the center of a standard sphere using the dual-arm hand–eye system in multi-view 3D imaging were 0.082 mm and 0.066 mm, respectively;
- (2)
- GCM-DHE is proposed to compute the global coordinates of encoded feature points through 3D reconstruction of a binocular motion structure. It further establishes the transformation relationships between the coordinate systems of two robotic arms by referencing encoded feature points and applying the Tsai–Lenz hand–eye calibration optimization algorithm. This method effectively addresses the challenges posed by non-overlapping fields of view and external noise. After calibration, the average error in multi-view 3D measurements using the dual-arm hand–eye system was 0.100 mm, demonstrating the effectiveness of the proposed global calibration approach;
- (3)
- We conducted a global calibration experiment of the dual-arm hand–eye system under complex noise conditions and compared the results with other calibration methods to verify the robustness of the proposed approach. Subsequently, we carried out a practical 3D measurement experiment on an automobile front fender component using a binocular structured light vision system combined with dual robotic arms. The results showed an average measurement error of 0.085 mm and a standard deviation of 0.018 mm, further demonstrating the accuracy of the proposed method in practical measurement applications.
2. M3DHE-ICP
3. GCM-DHE
4. Experiments
4.1. Multi-View 3D Imaging of the Hand–Eye System with M3DHE-ICP
4.2. Three-Dimensional Scanning Imaging Tests of Multi-View Fusion for GCM-DHE
4.3. Actual Measurement Experiments of the Hand–Eye System with Dual Mechanical Arms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Encode the Serial Number of the Feature Point | X (mm) | Y (mm) | Z (mm) |
---|---|---|---|
12684101218-11015-1 | 174.287 | 406.371 | 121.330 |
12684101218-11015-10 | 154.391 | 401.486 | 119.341 |
12684101218-11015-15 | 199.009 | 346.389 | 106.283 |
12684101218-11015-A | 192.325 | 402.493 | 121.034 |
12684101218-11015-B | 206.563 | 381.218 | 115.801 |
12684101218-11015-C | 186.408 | 383.694 | 115.827 |
12684101218-11015-E | 142.76 | 356.582 | 107.078 |
12684101218-11015-O | 210.338 | 398.670 | 120.563 |
… | |||
12684101218-5817-17 | 169.153 | −30.819 | 6.112 |
12684101218-5817-5 | 222.681 | −7.008 | 14.042 |
12684101218-5817-8 | 195.773 | −0.527 | 14.871 |
12684101218-5817-A | 216.184 | −32.987 | 7.053 |
12684101218-5817-B | 193.861 | −45.946 | 2.947 |
12684101218-5817-C | 196.881 | −26.520 | 8.204 |
Variable | The Hand–Eye Matrix of Robotic Arm No. 1 | The Hand–Eye Matrix of Robotic Arm No. 2 | The Transformation Matrix of the Robot Coordinate System | |
---|---|---|---|---|
Category | ||||
Rotation | [0.133, 0.139, −1.568] | [−0.123, 0.231, 3.111] | [−7.582 × 10−3, −3.056 × 10−3, −0.746] | |
Translation | [−96.046, 65.053, 90.697] | [103.499, 103.559, 72.669] | [807.320, −1339.438, 20.040] |
References
- Ahn, S.J.; Rauh, W.; Kim, S.I. Circular coded target for automation of optical 3D-measurement and camera calibration. Int. J. Pattern Recognit. Artif. Intell. 2001, 15, 905–919. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Yu, Z.; Fei, C.; Xiayan, S.; Dongrui, H. Precision circular target location in vision coordinate measurement system. In Proceedings of the Advanced Materials and Devices for Sensing and Imaging III, Beijing, China, 12–14 November 2007; SPIE: Bellingham, WA, USA; Volume 6829, pp. 90–97. [Google Scholar]
- Ahn, S.J.; Kotowski, R. Geometric image measurement errors of circular object targets. Opt. 3-D Meas. Tech. IV 1997, 463–471. Available online: https://www.researchgate.net/profile/Sung-Joon-Ahn/publication/272170844_GEOMETRIC_IMAGE_MEASUREMENT_ERRORS_OF_CIRCULAR_OBJECT_TARGETS/links/54dd66fd0cf28a3d93f912c4/GEOMETRIC-IMAGE-MEASUREMENT-ERRORS-OF-CIRCULAR-OBJECT-TARGETS.pdf (accessed on 6 July 2025).
- An, G.H.; Lee, S.; Seo, M.W.; Yun, K.; Cheong, W.S.; Kang, S.J. Charuco board-based omnidirectional camera calibration method. Electronics 2018, 7, 421. [Google Scholar] [CrossRef]
- Förstner, W.; Gülch, E. A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, 2–4 June 1987; Volume 6, pp. 281–305. [Google Scholar]
- Pan, X.; Ellis, T.J.; Clarke, T.A. Robust tracking of circular features. In Proceedings of the BMVC, Birmingham, UK, September 1995; Volume 95, pp. 553–562. [Google Scholar]
- Rocha, R.; Dias, J.; Carvalho, A. Cooperative multi-robot systems: A study of vision-based 3-D mapping using information theory. Robot. Auton. Syst. 2005, 53, 282–311. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Wei, Z.; Sun, J. A global calibration method for multiple vision sensors based on multiple targets. Meas. Sci. Technol. 2011, 22, 125102. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zhou, L.; Luo, J.; Han, X.; Wang, X.; Hu, L. Flexible technique for global calibration of multi-view stereo vision with a non-overlapping FOV using linear structured light projector. Opt. Express 2024, 32, 31405–31421. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Wang, H.C.; Wang, C.C. Automatic calibration of tool center point for six degree of freedom robot. Actuators 2023, 12, 107. [Google Scholar] [CrossRef]
- Rozlivek, J.; Rustler, L.; Stepanova, K.; Hoffmann, M. Multisensorial robot calibration framework and toolbox. In Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), Munich, Germany, 19–21 July 2021; IEEE: Piscataway, NJ, USA; pp. 459–466. [Google Scholar]
- Wang, C.C.; Zhu, Y.Q. Identification and Machine Learning Prediction of Nonlinear Behavior in a Robotic Arm System. Symmetry 2021, 13, 1445. [Google Scholar] [CrossRef]
- Evangelista, D.; Olivastri, E.; Allegro, D.; Menegatti, E.; Pretto, A. A graph-based optimization framework for hand-eye calibration for multi-camera setups. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA; pp. 1474–11480. [Google Scholar]
- Heikkila, T.; Sallinen, M.; Matsushita, T.; Tomita, F. Flexible hand-eye calibration for multi-camera systems. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), Takamatsu, Japan, 31 October–5 November 2000; IEEE: Piscataway, NJ, USA; Volume 3, pp. 2292–2297. [Google Scholar]
- Hu, J.; Jones, D.; Valdastri, P. Coordinate calibration of a dual-arm robot system by visual tool tracking. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA; pp. 11468–11473. [Google Scholar]
- Di Stefano, E.; Ruffaldi, E.; Avizzano, C.A. A multi-camera framework for visual servoing of a collaborative robot in industrial environments. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar]
- Mao, J.; Xu, R.; Ma, X.; Hu, S.; Bao, X. Fast calibration method for base coordinates of the dual-robot based on three-point measurement calibration method. Appl. Sci. 2023, 13, 8799. [Google Scholar] [CrossRef]
- Heshmati-Alamdari, S.; Sharifi, M.; Karras, G.C.; Fourlas, G.K. Control barrier function based visual servoing for Mobile Manipulator Systems under functional limitations. Robot. Auton. Syst. 2024, 182, 104813. [Google Scholar] [CrossRef]
- Oliveira, M.; Pedrosa, E.; de Aguiar, A.P.; Rato, D.F.P.D.; dos Santos, F.N.; Dias, P.; Santos, V. ATOM: A general calibration framework for multi-modal, multi-sensor systems. Expert Syst. Appl. 2022, 207, 118000. [Google Scholar] [CrossRef]
- Schmidt, B.; Wang, L. Automatic work objects calibration via a global–local camera system. Robot. Comput.-Integr. Manuf. 2014, 30, 678–683. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, L.; Liu, X.; Cao, Z.; Yu, J. Simultaneously calibration of multi hand-eye robot system based on graph. IEEE Trans. Ind. Electron. 2023, 71, 5010–5020. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Jiang, Y.; Yi, B.; Fan, R.; Liu, M. Simultaneous hand–eye/robot–world/camera–IMU calibration. IEEE/ASME Trans. Mechatron. 2021, 27, 2278–2289. [Google Scholar] [CrossRef]
- Wang, G.; Li, W.; Jiang, C.; Zhu, D.H.; Xie, H.; Liu, X.J.; Ding, H. Simultaneous calibration of multicoordinates for a dual-robot system by solving the AXB= YCZ problem. IEEE Trans. Robot. 2021, 37, 1172–1185. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Zhang, Y. Visual servoing for cooperative dual-manipulator system. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; IEEE: Piscataway, NJ, USA; pp. 3158–3163. [Google Scholar]
- Liu, Z.; Liu, X.; Duan, G.; Tan, J. Precise hand–eye calibration method based on spatial distance and epipolar constraints. Robot. Auton. Syst. 2021, 145, 103868. [Google Scholar] [CrossRef]
- Jin, G.; Yu, X.; Chen, Y.; Li, J. Hand-eye parameter estimation based on 3D observation of a single marker. IEEE Trans. Instrum. Meas. 2024, 18, 31405–31421. [Google Scholar]
- Song, L.; Zheng, T.; Li, Y.; Huang, H.; Yang, Y.; Zhu, X.; Zhang, Z. A novel dynamic tracking method for coded targets with complex background noise. Opt. Lasers Eng. 2025, 184, 108654. [Google Scholar] [CrossRef]
Mean Error of Fitted Spherocentric Coordinates (mm)/Group | ΔX | ΔY | ΔZ |
---|---|---|---|
1 | 0.022 | 0.036 | 0.040 |
2 | 0.073 | 0.029 | 0.062 |
3 | 0.036 | 0.018 | 0.104 |
All groups | 0.044 | 0.028 | 0.069 |
Mean Error of Fitted Spherical Center Distance (mm)/Group | 3d Point Cloud of the 1st Motion Pose | 3d Point Cloud of the 2nd Motion Pose | 3d Point Cloud of the 3rd Motion Pose |
---|---|---|---|
1 | 0.080 | 0.066 | 0.044 |
2 | 0.097 | 0.147 | 0.092 |
3 | 0.153 | 0.163 | 0.059 |
All groups | 0.110 | 0.125 | 0.065 |
Method/Fitting Mean Error (mm) | Rotary Table Scanning | Eva Handheld Scanner | Circular Calibration Target | Ours |
---|---|---|---|---|
ΔX | 0.108 | 0.116 | 0.312 | 0.044 |
ΔY | 0.102 | 0.076 | 0.281 | 0.028 |
ΔZ | 0.065 | 0.117 | 0.270 | 0.069 |
Euclidean distance | 0.188 | 0.212 | 0.556 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, T.; Feng, X.; Wang, S.; Huang, H.; Li, S. A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points. Micromachines 2025, 16, 809. https://doi.org/10.3390/mi16070809
Zheng T, Feng X, Wang S, Huang H, Li S. A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points. Micromachines. 2025; 16(7):809. https://doi.org/10.3390/mi16070809
Chicago/Turabian StyleZheng, Tenglong, Xiaoying Feng, Siyuan Wang, Haozhen Huang, and Shoupeng Li. 2025. "A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points" Micromachines 16, no. 7: 809. https://doi.org/10.3390/mi16070809
APA StyleZheng, T., Feng, X., Wang, S., Huang, H., & Li, S. (2025). A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points. Micromachines, 16(7), 809. https://doi.org/10.3390/mi16070809