Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design and Working Principle
Device Manufacturing
2.2. Slug-Flow Computational Model
2.2.1. Theoretical Background
2.2.2. Computational Fluid Dynamics (CFD) Model
2.3. Experimental Setup
2.4. Experimental Campaign
- Subset 1 (): The volumetric flow rates for both the continuous phase () and dispersed phase () were set to the same value. The flow rates were varied across 10 different values.
- Subset 2 ( and = 0.1 [mL/min]): The volumetric flow rate for the continuous phase () was fixed at 0.1 [mL/min], while the flow rate for the dispersed phase () was varied across 6 different values.
- Subset 3 ( and = 0.1 [mL/min]): The volumetric flow rate for the dispersed phase () was fixed at 0.1 [mL/min], while the flow rate for the continuous phase () was varied across 6 different values.
2.5. Acquired Signals and Investigated Responses
- The slug-flow velocity ()—This was estimated using the Dual-Slit Particle Signal Velocimetry (DPSV) method [49] applied to a slug-flow process. Briefly, it relies on the analysis of optical signals recorded by two photodiodes positioned at a known distance d in [m] along the flow direction. By cross-correlating the signals, the time delay in [s] between detections is determined through cross-correlation peak extraction, allowing the estimation of the slug-flow velocity according to
- The slug length ()—This was determined by considering the slug-flow velocity in [m/s] (derived from Equation (6)), the sampling period of the optical signal acquisition system in [s], and the number of samples corresponding to a single slug level within the square wave . The slug length was then calculated as the product of these three parameters according to
- The Reynolds number ()—This was calculated according to
- The Capillary number ()—This was calculated according to
3. Results and Discussion
3.1. Liquid–Liquid Slug Flow: Hexadecane–Water
3.2. Gas–Liquid Slug Flow: Air–Water
3.3. Reynolds and Capillary Numbers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ortseifen, V.; Viefhues, M.; Wobbe, L.; Grünberger, A. Microfluidics for biotechnology: Bridging gaps to foster microfluidic applications. Front. Bioeng. Biotechnol. 2020, 8, 589074. [Google Scholar] [CrossRef]
- Enders, A.; Grünberger, A.; Bahnemann, J. Towards small scale: Overview and applications of microfluidics in biotechnology. Mol. Biotechnol. 2024, 66, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, J.M.; Virumbrales-Muñoz, M.; Lang, J.M.; Beebe, D.J. A role for microfluidic systems in precision medicine. Nat. Commun. 2022, 13, 3086. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef]
- Gal-Or, E.; Gershoni, Y.; Scotti, G.; Nilsson, S.M.; Saarinen, J.; Jokinen, V.; Strachan, C.J.; af Gennäs, G.B.; Yli-Kauhaluoma, J.; Kotiaho, T. Chemical analysis using 3D printed glass microfluidics. Anal. Methods 2019, 11, 1802–1810. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M.; Pogue, B.W. Recent advances in microfluidics-based paper analytical devices (μPADs) for biochemical sensors: From fabrication to detection techniques. Biochem. Eng. J. 2023, 198, 109027. [Google Scholar] [CrossRef]
- Hajam, M.I.; Khan, M.M. Microfluidics: A concise review of the history, principles, design, applications, and future outlook. Biomater. Sci. 2024, 12, 218–251. [Google Scholar] [CrossRef]
- Hua, M.Z.; Li, S.; Wang, S.; Lu, X. Detecting chemical hazards in foods using microfluidic paper-based analytical devices (μPADs): The real-world application. Micromachines 2018, 9, 32. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Howes, P.D.; Srisa-Art, M.; DeMello, A.J. Droplet microfluidics: From proof-of-concept to real-world utility? Chem. Commun. 2019, 55, 9895–9903. [Google Scholar] [CrossRef]
- Rapp, B.E. Microfluidics: Modeling, Mechanics and Mathematics; William Andrew: Norwich, NY, USA, 2016. [Google Scholar]
- Stoecklein, D.; Di Carlo, D. Nonlinear microfluidics. Anal. Chem. 2018, 91, 296–314. [Google Scholar] [CrossRef]
- Ebner, P.; Wille, R. CFD for microfluidics: A workflow for setting up the simulation of microfluidic devices. In Proceedings of the 2023 26th Euromicro Conference on Digital System Design (DSD), Golem, Albania, 6–8 September 2023; pp. 770–775. [Google Scholar]
- Oberkampf, W.L.; Smith, B.L. Assessment criteria for computational fluid dynamics model validation experiments. J. Verif. Valid. Uncertain. Quantif. 2017, 2, 031002. [Google Scholar] [CrossRef]
- Carvalho, V.; Rodrigues, R.O.; Lima, R.A.; Teixeira, S. Computational simulations in advanced microfluidic devices: A review. Micromachines 2021, 12, 1149. [Google Scholar] [CrossRef]
- García, B.F.; Mousaviraad, M.; Saraji, S. Verification and validation for microfluidic CFD simulations of Newtonian and non-Newtonian flows. Appl. Math. Model. 2022, 107, 557–573. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, H.N.; Li, Y.K.; Li, X.B.; Wu, J.; Li, F.C. Nonlinear effects of viscoelastic fluid flows and applications in microfluidics: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4390–4414. [Google Scholar] [CrossRef]
- Geng, Y.; Ling, S.; Huang, J.; Xu, J. Multiphase microfluidics: Fundamentals, fabrication, and functions. Small 2020, 16, 1906357. [Google Scholar] [CrossRef]
- Domingues, A.F.; Poole, R.J.; Dennis, D.J. Inertial instabilities in a microfluidic mixing-separating device. Phys. Fluids 2019, 31, 074101. [Google Scholar] [CrossRef]
- Gupta, S.; Wang, W.S.; Vanapalli, S.A. Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics 2016, 10, 043402. [Google Scholar] [CrossRef]
- Lee, D.; Shen, A.Q. Interfacial tension measurements in microfluidic quasi-static extensional flows. Micromachines 2021, 12, 272. [Google Scholar] [CrossRef]
- Yin, J.; Kuhn, S. Numerical simulation of droplet formation in a microfluidic T-junction using a dynamic contact angle model. Chem. Eng. Sci. 2022, 261, 117874. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Jarrahbashi, D.; Lee, B.J.; Karimi, N.; Faroughi, S.A. Impact of hybrid surfaces on the droplet breakup dynamics in microgravity slug flow: A dynamic contact angle analysis. Phys. Fluids 2023, 35, 072003. [Google Scholar] [CrossRef]
- Venkateshwarlu, A.; Bharti, R.P. Effects of surface wettability and flow rates on the interface evolution and droplet pinch-off mechanism in the cross-flow microfluidic systems. Chem. Eng. Sci. 2023, 267, 118279. [Google Scholar] [CrossRef]
- Li, N.; Chen, B.; Du, X.; Han, D. Experimental and numerical study on the elimination of severe slugging by riser outlet choking. Energies 2022, 15, 7284. [Google Scholar] [CrossRef]
- Bordbar, A.; Taassob, A.; Zarnaghsh, A.; Kamali, R. Slug flow in microchannels: Numerical simulation and applications. J. Ind. Eng. Chem. 2018, 62, 26–39. [Google Scholar] [CrossRef]
- Lei, L.; Zhao, Y.; Chen, W.; Li, H.; Wang, X.; Zhang, J. Experimental studies of droplet formation process and length for liquid–liquid two-phase flows in a microchannel. Energies 2021, 14, 1341. [Google Scholar] [CrossRef]
- Maurice, A.; Theisen, J.; Gabriel, J.C.P. Microfluidic lab-on-chip advances for liquid–liquid extraction process studies. Curr. Opin. Colloid Interface Sci. 2020, 46, 20–35. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Yue, J.; Yao, C.; Chen, G. Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors. Chem. Eng. J. 2021, 406, 126885. [Google Scholar] [CrossRef]
- Cairone, F.; Gagliano, S.; Bucolo, M. Experimental study on the slug flow in a serpentine microchannel. Exp. Therm. Fluid Sci. 2016, 76, 34–44. [Google Scholar] [CrossRef]
- Venkateshwarlu, A.; Bharti, R.P. Mechanism of temporal interface evolution and internal circulations during the droplet formation in a planar slit T-microchannel. Phys. Fluids 2024, 36, 072017. [Google Scholar] [CrossRef]
- Radhakrishnan, A.N.; Pradas, M.; Sorensen, E.; Kalliadasis, S.; Gavriilidis, A. Hydrodynamic characterization of phase separation in devices with microfabricated capillaries. Langmuir 2019, 35, 8199–8209. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.; Dang, D.; Yang, X.; Yang, W.; Liang, W. A review of microfluidic-based mixing methods. Sens. Actuators A Phys. 2022, 344, 113757. [Google Scholar] [CrossRef]
- Jia, F.; Zhang, H.; Wang, C.; Li, S.; Wei, M. Study on internal circulation patterns and heat transfer characteristics of gas-liquid Taylor flow in a gradually expanding microchannel. Chem. Eng. Process.Process Intensif. 2025, 212, 110283. [Google Scholar] [CrossRef]
- Sartipzadeh, O.; Naghib, S.M.; Seyfoori, A.; Rahmanian, M.; Fateminia, F.S. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. Mater. Sci. Eng. C 2020, 109, 110606. [Google Scholar] [CrossRef] [PubMed]
- Cutuli, E.; Stella, G.; Guarino, F.; Bucolo, M. Automatic label-free image-based system for cell viability monitoring on-a-chip. Biomed. Signal Process. Control 2025, 107768. [Google Scholar] [CrossRef]
- Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014, 25, 95–102. [Google Scholar] [CrossRef]
- Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Pisapia, F.; Balachandran, W.; Rasekh, M. Organ-on-a-Chip: Design and simulation of various microfluidic channel geometries for the influence of fluid dynamic parameters. Appl. Sci. 2022, 12, 3829. [Google Scholar] [CrossRef]
- Stella, G.; Saitta, L.; Moscato, S.; Cicala, G.; Bucolo, M. 3D-Printed Micro-Optofluidic Slug Flow Detector. IEEE Sens. J. 2024, 24, 18813–18826. [Google Scholar] [CrossRef]
- Moscato, S.; Sanalitro, D.; Stella, G.; Bucolo, M. Model Predictive Control framework for slug flow microfluidics processes. Control Eng. Pract. 2024, 148, 105944. [Google Scholar] [CrossRef]
- Hengoju, S.; Shvydkiv, O.; Tovar, M.; Roth, M.; Rosenbaum, M.A. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens. Bioelectron. 2022, 200, 113910. [Google Scholar] [CrossRef]
- Saitta, L.; Cutuli, E.; Celano, G.; Tosto, C.; Sanalitro, D.; Guarino, F.; Cicala, G.; Bucolo, M. Projection micro-stereolithography to manufacture a biocompatible micro-optofluidic device for cell concentration monitoring. Polymers 2023, 15, 4461. [Google Scholar] [CrossRef]
- Saitta, L.; Cutuli, E.; Celano, G.; Tosto, G.C.; Guarino, F.; Cicala, G.; Bucolo, M. Monolithic 3D Printed Micro-Optofluidic Device for Two-Phase Flow Monitoring and Bioapplications. In Proceedings of the 2024 IEEE International Conference and Exposition on Electric and Power Engineering (EPEi), Iaşi, Romania, 17–19 October 2024; pp. 642–647. [Google Scholar]
- Li, L.; Zhang, Y.N.; Zhou, Y.; Zheng, W.; Sun, Y.; Ma, G.; Zhao, Y. Optical fiber optofluidic bio-chemical sensors: A review. Laser Photonics Rev. 2021, 15, 2000526. [Google Scholar] [CrossRef]
- Asghari, M.; Serhatlioglu, M.; Ortaç, B.; Solmaz, M.E.; Elbuken, C. Sheathless microflow cytometry using viscoelastic fluids. Sci. Rep. 2017, 7, 12342. [Google Scholar] [CrossRef]
- Leça, J.M.; Magalhães, Y.; Antunes, P.; Pereira, V.; Ferreira, M.S. Real-time measurement of refractive index using 3D-printed optofluidic fiber sensor. Sensors 2022, 22, 9377. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, H.; Krishnaswamy, S. 3D printing optofluidic Mach-Zehnder interferometer on a fiber tip for refractive index sensing. IEEE Photonics Technol. Lett. 2019, 31, 1725–1728. [Google Scholar] [CrossRef]
- David, N.; Djilali, N.; Wild, P. Fiber Bragg grating sensor for two-phase flow in microchannels. Microfluid. Nanofluid. 2012, 13, 99–106. [Google Scholar] [CrossRef]
- Cutuli, E.; Sanalitro, D.; Stella, G.; Saitta, L.; Bucolo, M. A 3D-Printed Micro-Optofluidic Chamber for Fluid Characterization and Microparticle Velocity Detection. Micromachines 2023, 14, 2115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yue, P.; Feng, J.J. Deformation of a compound drop through a contraction in a pressure-driven pipe flow. Int. J. Multiph. Flow 2008, 34, 102–109. [Google Scholar] [CrossRef]
- Anandan, P.; Gagliano, S.; Bucolo, M. Computational models in microfluidic bubble logic. Microfluid. Nanofluid. 2015, 18, 305–321. [Google Scholar] [CrossRef]
- Wörner, M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluid. Nanofluid. 2012, 12, 841–886. [Google Scholar] [CrossRef]
- Shui, L.; Eijkel, J.C.; Wijnperle, D.; vd Berg, A. The effect of interfacial forces on 2-phase microfluidics. In Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, μTAS 2008, San Diego, CA, USA, 12–16 October 2008; pp. 790–792. [Google Scholar]
- Bruus, H. Theoretical Microfluidics; Oxford University Press: Oxford, UK, 2007; Volume 18. [Google Scholar]
- Van der Graaf, S.; Nisisako, T.; Schroën, C.; Van Der Sman, R.; Boom, R. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 2006, 22, 4144–4152. [Google Scholar] [CrossRef]
- Günther, A.; Jensen, K.F. Multiphase microfluidics: From flow characteristics to chemical and materials synthesis. Lab Chip 2006, 6, 1487–1503. [Google Scholar] [CrossRef]
- Ma, L.; Yan, Z.; Du, C.; Deng, J.; Luo, G. Effect of viscosity on liquid–liquid slug flow in a step T-junction microchannel. Ind. Eng. Chem. Res. 2022, 61, 8333–8345. [Google Scholar] [CrossRef]
- Liu, H.; Vandu, C.O.; Krishna, R. Hydrodynamics of Taylor flow in vertical capillaries: Flow regimes, bubble rise velocity, liquid slug length, and pressure drop. Ind. Eng. Chem. Res. 2005, 44, 4884–4897. [Google Scholar] [CrossRef]
- van Steijn, V.; Kreutzer, M.T.; Kleijn, C.R. μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem. Eng. Sci. 2007, 62, 7505–7514. [Google Scholar] [CrossRef]
- Du, W.; Duan, Y.; Wang, L.; Liu, D. Liquid–liquid two-phase flow and size prediction of slug droplets in microchannels. Processes 2023, 11, 2390. [Google Scholar] [CrossRef]
- Zhou, G.; Yao, S.C. Effect of surface roughness on laminar liquid flow in micro-channels. Appl. Therm. Eng. 2011, 31, 228–234. [Google Scholar] [CrossRef]
- Ranjan, P. Investigations on the flow behaviour in microfluidic device due to surface roughness: A computational fluid dynamics simulation. Microsyst. Technol. 2019, 25, 3779–3789. [Google Scholar] [CrossRef]
Subset 1 | Subset 2 | Subset 3 | |||
---|---|---|---|---|---|
() | () | () | |||
( = 0.1 [mL/min]) | ( = 0.1 [mL/min]) | ||||
(, ) | () | () | |||
Subset 1 [mL/min] | Subset 2 [mL/min] | Subset 3 [mL/min] |
---|---|---|
() | () | () |
() | () | |
(, ) | () | () |
Computational Time [hh:mm:ss] | Minimum Mesh Size Length [μm] | Maximum Mesh Size Length [μm] | Time Step [ms] | ||
---|---|---|---|---|---|
Subset 1 | 4 | 140 | 10 | ||
4 | 140 | 10 | |||
4 | 140 | 1 | |||
Subset 2 | 112 | 10 | |||
4 | 140 | 10 | |||
112 | 5 | ||||
Subset 3 | 112 | 10 | |||
4 | 140 | 10 | |||
112 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscato, S.; Cutuli, E.; Camarda, M.; Bucolo, M. Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring. Micromachines 2025, 16, 586. https://doi.org/10.3390/mi16050586
Moscato S, Cutuli E, Camarda M, Bucolo M. Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring. Micromachines. 2025; 16(5):586. https://doi.org/10.3390/mi16050586
Chicago/Turabian StyleMoscato, Samuele, Emanuela Cutuli, Massimo Camarda, and Maide Bucolo. 2025. "Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring" Micromachines 16, no. 5: 586. https://doi.org/10.3390/mi16050586
APA StyleMoscato, S., Cutuli, E., Camarda, M., & Bucolo, M. (2025). Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring. Micromachines, 16(5), 586. https://doi.org/10.3390/mi16050586