End Surface Grinding Machinability of Zirconia Ceramics via Longitudinal–Torsional Coupled Vibration Rotary Ultrasonic Machining
Abstract
1. Introduction
2. Mechanism of Material Removal
2.1. Kinematic Analysis of a Single Abrasive Grain
2.2. Material Removal Mechanism by a Single Abrasive Grain
3. Experimental Setup and Methodology
3.1. Experimental Setup
3.2. Design of Experiment
4. Results and Discussion
4.1. Cutting Force
4.2. Surface Roughness
4.3. Surface Morphology
5. Conclusions
- (1)
- A kinematic analysis of the motion paths of individual abrasive grains in both machining methods was carried out. The intermittent interaction between the abrasive grains and the workpiece in LTC-RUM altered the material removal mechanism, thereby enhancing the efficiency of plastic material removal.
- (2)
- Both cutting force Fc and surface roughness showed a decreasing trend with increased spindle speed and ultrasonic power, while they increased with higher feed rates and cutting depths in both LTC-RUM and CON-M. Experimental results demonstrated that LTC-RUM, when operated under appropriate machining conditions, including optimal spindle speed, feed rate, cutting depth, and ultrasonic power, achieved considerable reductions in cutting force and surface roughness compared to CON-M. Specifically, cutting force was reduced by 33.87% to 38.35%, and surface roughness improvement ranged from 24.8% to 38.1%.
- (3)
- The material removal mechanisms in CON-M and LTC-RUM were found to differ significantly. The critical cutting depth in LTC-RUM was higher than that in CON-M, as material removal in CON-M primarily involved crack propagation, whereas LTC-RUM relied more on plastic deformation. The integration of longitudinal–torsional coupled vibration notably enhanced the surface microstructural quality of the machined ZrO2 ceramics.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, F.; Li, G.X.; Zhao, B.; Bie, W.B. Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics. Chin. J. Aeronaut. 2021, 34, 125–140. [Google Scholar] [CrossRef]
- Yang, Z.C.; Zhu, L.D.; Zhang, G.X.; Ni, C.B.; Lin, B. Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools. Manuf. 2020, 156, 103594. [Google Scholar] [CrossRef]
- Zhao, B.; Chang, B.Q.; Wang, X.B.; Bie, W.B. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics. Ceram. Int. 2019, 45, 24865–24877. [Google Scholar] [CrossRef]
- Chen, F.; Bie, W.B.; Wang, X.B.; Zhao, B. Longitudinal-torsional coupled rotary ultrasonic machining of ZrO2 ceramics: An experimental study. Ceram. Int. 2022, 48, 28154–28162. [Google Scholar] [CrossRef]
- Qin, S.Q.; Zhu, L.D.; Hao, Y.P.; Shi, C.L.; Wang, S.F.; Yang, Z.C. Theoretical and experimental investigations of surface generation induced by ultrasonic assisted grinding. Tribol. Int. 2023, 179, 108120. [Google Scholar] [CrossRef]
- Li, H.B.; Chen, T.; Duan, Z.Y.; Zhang, Y.W.; Li, H.T. A grinding force model in two-dimensional ultrasonic-assisted grinding of silicon carbide. J. Mater. Process. Tech. 2022, 304, 117568. [Google Scholar] [CrossRef]
- Yuan, Z.J.; Xiang, D.H.; Peng, P.C.; Zhang, Z.Q.; Li, B.H.; Ma, M.Y.; Zhang, Z.P.; Gao, G.F.; Zhao, B. A comprehensive review of advances in ultrasonic vibration machining on SiCp/Al composites. J. Mater. Res. Technol. 2023, 24, 6665–6698. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.Y.; Qin, W.; Geng, D.X. Removal analyses of chip and rod in rotary ultrasonic-assisted drilling of carbon fiber-reinforced plastics using core drill. J. Reinf. Plast. Comp. 2016, 35, 1173–1190. [Google Scholar] [CrossRef]
- Lv, D.; Huang, Y.; Tang, Y.; Wang, H. Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes. Int. J. Adv. Manuf. Technol. 2013, 67, 613–622. [Google Scholar] [CrossRef]
- Bertsche, E.; Ehmann, K.; Malukhin, K. An analytical model of rotary ultrasonic milling. Int. J. Adv. Manuf. Technol. 2013, 65, 1705–1720. [Google Scholar] [CrossRef]
- Zhang, C.L.; Feng, P.F.; Pei, Z.J.; Cong, W.L. Rotary ultrasonic machining of sapphire: Feasibility study and designed experiments. Key Eng. Mater. 2014, 589–590, 523–528. [Google Scholar] [CrossRef]
- Pei, Z.J.; Prabhakar, D.; Ferreira, P.M.; Haselkorn, M. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J. Manuf. Sci. Eng. 1995, 117, 142–151. [Google Scholar] [CrossRef]
- Liu, D.F.; Cong, W.L.; Pei, Z.J.; Tang, Y.J. A cutting force model for rotary ultrasonic machining of brittle materials. Int. J. Mach. Tools. Manuf. 2012, 52, 77–84. [Google Scholar] [CrossRef]
- Xiao, X.Z.; Zheng, K.; Liao, W.H.; Meng, H. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int. J. Mach. Tools. Manuf. 2016, 104, 58–67. [Google Scholar] [CrossRef]
- Yang, Z.C.; Zhu, L.D.; Lin, B.; Zhang, G.X.; Ni, C.B.; Sui, T.Y. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram. Int. 2019, 45, 8873–8889. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, M.; Zhang, H.J. A cutting force prediction model in axial ultrasonic vibration end grinding for BK7 optical glass considering protrusion height of abrasive grits. Measurement 2021, 180, 109512. [Google Scholar] [CrossRef]
- Tang, X.T.; Liu, Y.X.; Shi, S.J.; Chen, W.S. Development of a novel ultrasonic drill using longitudinal-bending hybrid mode. IEEE Access. 2017, 5, 7362–7370. [Google Scholar] [CrossRef]
- Geng, D.X.; Lu, Z.H.; Yao, G.; Liu, J.J.; Li, Z.; Zhang, D.Y. Cutting temperature and resulting infuence on machining performance in rotary ultrasonic elliptical machining of thick CFRP. Int. J. Mach. Tools. Manuf. 2017, 123, 160–170. [Google Scholar] [CrossRef]
- Zhao, B.; Bie, W.B.; Wang, X.; Chen, F.; Chang, B.Q. Design and experimental investigation on longitudinal-torsional composite horn considering the incident angle of ultrasonic wave. Int. J. Adv. Manuf. Technol. 2019, 105, 325–341. [Google Scholar] [CrossRef]
- Gao, G.F.; Xia, Z.W.; Yuan, Z.J.; Xiang, D.H.; Zhao, B. Infuence of longitudinal-torsional ultrasonic-assisted vibration on microhole drilling Ti-6Al-4V. Chin. J. Aeronaut. 2021, 34, 247–260. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, J.F.; Feng, P.F.; Guo, P. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manuf. Lett. 2018, 18, 1–5. [Google Scholar] [CrossRef]
- Ma, W.J.; Xue, J.X.; Yang, Y.H.; Zhao, H.; Hu, G.H.; Long, Z.L. Kinematics characteristics and experimental analysis of longitudinal torsional ultrasonic grinding for Zirconia ceramics. Mech. Sci. Technol. Aerosp. Eng. 2020, 39, 1580–1586. [Google Scholar]
- Qiao, G.C.; Cheng, Z.; Zheng, W.; Yi, S.C.; Zhang, F.J. Grinding force model for longitudinal-torsional ultrasonic-assisted face grinding of ceramic matrix composites. Int. J. Adv. Manuf. Technol. 2022, 120, 7721–7733. [Google Scholar] [CrossRef]
- Chen, F.; Bie, W.B.; Chang, Y.L.; Zhao, B.; Wang, X.B.; Zhang, Y.M. Analytical and experimental investigation on cutting force in longitudinal-torsional coupled rotary ultrasonic machining zirconia ceramics. Int. J. Adv. Manuf. Technol. 2022, 120, 4051–4064. [Google Scholar] [CrossRef]
- Jin, J.W.; Wang, X.B.; Bie, W.B.; Chen, F.; Zhao, B. Machinability of sicf/sic ceramic matrix composites using longitudinal-torsional coupled rotary ultrasonic machining. Int. J. Adv. Manuf. Technol. 2023, 13, 2465–2476. [Google Scholar] [CrossRef]
- Sun, Q.X.; Ren, K.; An, Q.L.; Tao, D.Y.; Yu, M.Q.; Miao, Q.; Zhang, M.; Li, H.; Yi, Z. Study on removal mechanism and surface quality of SiCf/SiC composites by longitudinal torsional ultrasonic vibration-assisted grinding. Precis. Eng. 2024, 91, 47–58. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Jiao, F.; Li, Y.X.; Wang, X.; Niu, Y.; Tong, J.L. Experimental study on rotary longitudinal-torsional ultrasonic machining of unidirectional CFRP. Chin. J. Aeronaut. 2024, 37, 517–534. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, J.F.; Feng, P.F.; Guo, P.; Zhang, Q.L. Feasibility study of longitudinal-torsional-coupled rotary ultrasonic machining of brittle material. J. Manuf. Sci. Eng. 2018, 40, 51008. [Google Scholar] [CrossRef]
- Jiao, F. The Theoretical and Experimental Studies on Ultrasonic Aided High Efficiency Lapping with Solid Abrasive of Engineering Ceramic. Ph. D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2008. [Google Scholar]
- Arif, M.; Zhang, X.Q.; Rahman, M.; Kumar, S. A predictive model of the critical undeformed chip thickness for ductilebrittle transition in nano-machining of brittle materials, International journal of machine tools and manufacture. Int. J. Mach. Tools. Manuf. 2013, 64, 114–122. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Q.; Dong, S.; Li, D. The critical conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J. Mater. Process. Technol. 2005, 168, 75–82. [Google Scholar] [CrossRef]
- George, J.; Peter, G. Microindentation analysis of diammonium hydrogen citrate single crystals. J. Mater. Sci. 1985, 20, 3150–3156. [Google Scholar] [CrossRef]
- Kalthoff, J.F.; Bürgel, A. Influence of loading rate on shear fracture toughness for failure mode transition. Int. J. Impact. Eng. 2004, 30, 957–971. [Google Scholar] [CrossRef]
- Tong, F.Q.; Zhang, Y.; Zhang, F.H.; Gu, L.Z.; Sun, P. Influence of stress fluctuation in vibrating cutting on crack creation and chip formation. J. Vib. Shock. 2008, 27, 136–139. [Google Scholar]
- Cong, W.L.; Pei, Z.J.; Sun, X.; Zhang, C.L. Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force. Ultrasonics 2014, 54, 663–675. [Google Scholar] [CrossRef] [PubMed]
Property | Elastic Modulus (GPa) | Hardness (GPa) | Fracture Toughness (MPa m1/2) | Density (g/cm3) | Poisson’s Ratio |
---|---|---|---|---|---|
Value | 210 | 12 | 6 | 6.05 | 0.3 |
Mesh Size | Abrasive Particle Size da (mm) | Abrasive Concentration Ca | Outer Diameter do (mm) | Inner Diameter di (mm) |
---|---|---|---|---|
#80–100 | 0.162 | 100 | 8.07 | 6.80 |
Variable | Values |
---|---|
Spindle speed n (r/min) | 6000, 8000, 10,000, 12,000 |
Cutting depth ap (μm) | 6, 8, 10, 12 |
Feed rate fr (mm/min) | 60, 80, 100, 120 |
Ultrasonic power P (%) | 0, 20, 40, 60, 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Bie, W.; Li, K.; Ma, X. End Surface Grinding Machinability of Zirconia Ceramics via Longitudinal–Torsional Coupled Vibration Rotary Ultrasonic Machining. Micromachines 2025, 16, 1065. https://doi.org/10.3390/mi16091065
Chen F, Bie W, Li K, Ma X. End Surface Grinding Machinability of Zirconia Ceramics via Longitudinal–Torsional Coupled Vibration Rotary Ultrasonic Machining. Micromachines. 2025; 16(9):1065. https://doi.org/10.3390/mi16091065
Chicago/Turabian StyleChen, Fan, Wenbo Bie, Kuohu Li, and Xiaosan Ma. 2025. "End Surface Grinding Machinability of Zirconia Ceramics via Longitudinal–Torsional Coupled Vibration Rotary Ultrasonic Machining" Micromachines 16, no. 9: 1065. https://doi.org/10.3390/mi16091065
APA StyleChen, F., Bie, W., Li, K., & Ma, X. (2025). End Surface Grinding Machinability of Zirconia Ceramics via Longitudinal–Torsional Coupled Vibration Rotary Ultrasonic Machining. Micromachines, 16(9), 1065. https://doi.org/10.3390/mi16091065