Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers
Abstract
:1. Introduction
2. Working Mechanism of WOLEDs Based on UEMLs
3. Doping WOLEDs with UEMLs
3.1. Fluorescent Doping WOLEDs with UEMLs
3.2. Phosphorescent Doping WOLEDs with UEMLs
3.3. Hybrid Doping WOLEDs with UEMLs
4. Doping-Free WOLEDs with UEMLs
4.1. Fluorescent Doping-Free WOLEDs with UEMLs
4.2. Phosphorescent Doping-Free WOLEDs with UEMLs
4.3. Hybrid Doping-Free WOLEDs with UEMLs
Devices | CIE (x, y) | CRI | Turn-On Voltage (V) | EQEmax/PEmax/CEmax |
---|---|---|---|---|
%/Lm W−1/cd A−1 | ||||
Ref. [106] | (0.3198, 0.340) a | 97 | -- | -/-/- |
Ref. [107] | (0.3626, 0.388) b | 84 | -/6.68/13.54 | |
Ref. [108] | (0.331, 0.332) c | -- | 3 | -/-/- |
Ref. [109] | (0.338, 0.378) d | 3.2 | 2.126/-/6.71 | |
Ref. [23] | (0.39, 0.43) e | 81 | 2.5 | 24.2/46.4/51.7 |
Ref. [23] | (0.38, 0.46) f | - | 3.2 | 17.6/45.5/46.1 |
Ref. [116] | (0.32, 0.38) e | - | 6 | 31.6/42.6/94.9 |
Ref. [118] | (0.419, 0.421) g | 74.9 | - | -/17.0/23.4 |
Ref. [119] | (0.41, 0.43) e | - | - | -/27.2/30.3 |
Ref. [119] | (0.401, 0.44) h | - | - | -/27.7/30.9 |
Ref. [119] | (0.361, 0.466) c | - | - | -/26.0/28.9 |
Ref. [120] | (0.48, 0.47) e | - | - | 15.0/36.0/37.2 |
Ref. [121] | (0.40, 0.39) e | 70 | 2.7 | 18.5/40.0/34.6 |
Ref. [122] | (0.47, 0.43) e | 80 | 2.9 | 20.3/39/44.2 |
Ref. [125] | (0.466, 0.503) e | - | 2.25 | 21.3/91.5/70 |
Ref. [127] | (0.44, 0.43) e | 82 | - | -/20.5/23.2 |
Ref. [128] | (0.49, 0.41) e | 91.3 | - | 14.6/-/- |
Ref. [33] | (0.48, 0.40) e | 92.1 | 2.85 | 15.1/28.2/26.9 |
Ref. [129] | (0.482, 0.430) e | 96 | 3.3 | 19.34/30.65/32.19 |
Ref. [130] | (0.469, 0.382) i | 73 | 2.7~3.3 | 17.3/30.4/31.9 |
Ref. [131] | (0.40, 0.46) c | - | 2.3 | 11.4/29.2/34.9 |
Ref. [132] | (0.44, 0.48) e | 50 | 3.1 | 9.1/22.7/29.0 |
Ref. [136] | (0.52, 0.46) e | 60 | 2.1 | 14.96/37.05/38.93 |
Ref. [137] | (0.42, 0.46) e | - | 2.85 | 15.6/41.8/46.6 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
OLEDs | organic light-emitting diodes |
WOLEDs | white organic light-emitting diodes |
EML | emitting layer |
UEML | ultrathin emitting layer |
EQE | external quantum efficiency |
TTA | triplet–triplet annihilation |
AFM | atomic force microscopy |
S1 | singlet state |
IQE | internal quantum efficiency |
T1 | triplet excitons |
DET | Dexter energy transfer |
FRET | Förster energy transfer |
TADF | thermally activated delayed fluorescence |
RISC | reverse intersystem crossing |
energy gap | |
FWHM | full width at half maxima |
EL | electroluminescence |
DSA-ph | P-bis(p-N, N-diphenylaminostyryl)benzene |
MADN | 2-methyl-9,10-di(2-naphthyl)anthracene |
Rubrene | 5,6,11,12-tetraphenyl-naphthacene |
PE | power efficiency |
UPL | ultrathin premixed layer |
fvin | 4-di(4′-tert-butylbiphenyl-4-yl)aminobiphenyl-4′-yl)acrylonitrile |
fcho | 4-di(4′-tert-butylbiphenyl-4-yl)aminobenzaldehyde |
HTL | hole transport layer |
CIE | Commission Internationale de l’Eclairage |
CRI | color rendering index |
IL | interlayer |
ETL | electron transport layer |
Ir(bt)2(acac) | bis(2-phenyl-benzothiozolato-N,C2’)iridium(acetylacetonate) |
FIrpic | bis(3,5-difluoro-2–(2-pyridyl)phenyl-(2-carboxypyridyl))iridium III |
TCTA | 4,4,4″-tris(N-carbazolyl)triphenyl-amine |
26DCzPPy | 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine |
CE | current efficiency |
HTM | hole transporting material |
Ir(2-phq)2(acac) | bis(2-phenylquinoline)-(acetylacetonate)-iridium(III) |
Ir(ppy)3 | fac-tris(2-phenyl-pyridinato)-iridium(III) |
RZ | recombination zone |
ETM | electron transport material |
PO-01 | Iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N, C2′) acetylacetonate |
TPBi | 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) |
mCP | N,N′-dicarbazolyl-3,5-benzene |
B3PYMPM | bis-4,6-(3,5-di-3-pyridyl-phenyl)-2-methylpyrimidine |
mCBP | 4,4’-bis(3-mehtylcarbazol-9-yl)-2,2’-biphenyl |
PO-T2T | 1,3,5-triazine-2,4,6-triyl)tris(benzene3,1-diyl))tris(diphenylphosphine oxide |
CCT | correlated color temperature |
EAL | excitons adjustment layer |
FSF4A | N-([1,10-biphenyl]-2-yl)-N(9,9-dimethyl-9h-fluoren-2-yl)-9,90-spirobi[fluorene]-4-amine |
(tbt)2Ir(acac) | bis(4-tert-butyl-2-phenylbenzo[4,5]thiazolo-[3,2-a]pyridin-5-yl)iridium(III) (acetylacetonate) |
DMAC-DPS | bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone |
PLQY | photoluminescence quantum yield |
PO-01-TB | Iridium(III) bis(4-(4-tert-butylphenyl) thieno[3,2-c]pyridinato-N,C2′d) acetylacetonate |
DCM2 | [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene] propane-dinitrile |
p-TDPVBi | 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl |
QAD | quinacridone |
CGU | charge generation units |
C-EAL | charge/exciton modulation layer |
Ir(pq)2acac | iridium(III) bis(2-phenylquinolinyl)acetyl-acetonate |
mSOAD | bis(3-(9,9-dimethyl-9,10-dihydroacridine)phenyl)sulfone |
TPXZPO | 10,10,10-(4,4,4-phosphine-trioxotriphenylamine) trioxotriphenylamine (10Hphenoxazine) |
References
- Gather, M.C.; Köhnen, A.; Meerholz, K. White organic light-emitting diodes. Adv. Mater. 2010, 23, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Singh, G.; Thallapaka, B.; Mehta, D.S. White organic light-emitting diodes based on a single-emissive layer using electrophosphorescent dopants in a fluorescent host. J. Inf. Disp. 2014, 15, 119–126. [Google Scholar] [CrossRef]
- Miao, Y.; Yin, M. Recent progress on organic light-emitting diodes with phosphorescent ultrathin (<1 nm) light-emitting layers. iScience 2022, 25, 103804. [Google Scholar] [PubMed]
- Wang, J.; Zhang, F.J.; Zhang, J.; Tang, W.H.; Tang, A.W.; Peng, H.S.; Xu, Z.; Teng, F.; Wang, Y.S. Key issues and recent progress of high efficient organic light-emitting diodes. J. Photochem. Photobiol. C-Photochem. Rev. 2013, 17, 69–104. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A brief history of oleds—Emitter development and industry milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.M.; Ali, M.U.; Xie, W.F.; Yang, H.A.; Meng, H. Evolution of white organic light-emitting devices: From academic research to lighting and display applications. Mater. Chem. Front. 2019, 3, 970–1031. [Google Scholar] [CrossRef]
- Wang, S.S.; Li, L.N.; Sun, Z.H.; Ji, C.M.; Liu, S.J.; Wu, Z.Y.; Zhao, S.E.; Zeb, A.; Hong, M.C.; Luo, J.H. A semi-conductive organic-inorganic hybrid emits pure white light with an ultrahigh color rendering index. J. Mater. Chem. C 2017, 5, 4731–4735. [Google Scholar] [CrossRef]
- Li, S.B.; Zhou, L.; Zhu, Q.; Wu, R.X.; Chen, K.; Li, Z.Z.; Zhang, H.J. High performance blue and white phosphorescent organic light-emitting diodes obtained by sensitizing both light-emitting and electron transport layers. J. Lumin. 2021, 238, 7. [Google Scholar] [CrossRef]
- Xu, T.; Fu, J.H.; Wang, X.Z.; Lu, G.H.; Liu, B.Q. Understanding the structure and energy transfer process of undoped ultrathin emitting nanolayers within interface exciplexes. Front. Chem. 2022, 10, 7. [Google Scholar] [CrossRef]
- Kidanu, H.T.; Chen, C.T. Achieving pure yellow, high-efficiency (EQE > 20%) electroluminescence from ultrathin emitting layer (0.6–2.0 nm) OLEDs having a rare aggregation-free heteroleptic platinum complex. J. Mater. Chem. C 2021, 9, 1410–1418. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, J.G.; Fung, M.K.; Meng, H. Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes. Org. Electron. 2018, 63, 369–375. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Q.; Zhao, Y.B.; Chen, Y.H.; Yang, D.Z.; Zhao, F.C.; Chen, J.S.; Ma, D.G. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions. Adv. Mater. 2014, 26, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.M.; Gao, K.; Qiu, W.D.; Xu, Z.D.; Li, M.K.; Xie, W.T.; Yang, J.J.; Li, D.L.; Liu, K.K.; Su, S.J. Highly Efficient Doping-Free Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultrathin Quasi-Host-Guest Emission Layer. Adv. Opt. Mater. 2023, 11, 2300868. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, S.; Ling, Z.; Chen, H.; Yu, N.; Zhou, P.; Lian, H.; Lan, W.; Liao, Y.; Wei, B.; et al. Systematical Investigation of Ultrathin Doped Emissive Layer Structure: Achieving Highly Efficient and Long-Lifetime Orange Organic Light-Emitting Diodes. Adv. Mater. Interfaces 2019, 7, 1901609. [Google Scholar] [CrossRef]
- Ding, L.; Wang, J.N.; Ni, T.; Xue, Q.; Hu, S.; Wu, R.; Luo, D.; Zheng, H.; Liu, Y.; Liu, B. Extremely-low-voltage, high-efficiency and stability-enhanced inverted bottom OLEDs enabled via a p-type/ultra-thin metal/n-doped electron injection layer. J. Mater. Chem. C 2023, 11, 2672–2679. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Gao, H.Y.; Wang, J.; Yan, Y.F.; Lin, X.B.; Liao, S.L.; Luo, D.H.; Kwok, H.S.; Liu, B.Q. Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers. J. Electronics. 2023, 12, 3164. [Google Scholar] [CrossRef]
- Meng, L.Q.; Wang, H.; Wei, X.F.; Liu, J.J.; Chen, Y.Z.; Kong, X.B.; Lv, X.P.; Wang, P.F.; Wang, Y. Highly efficient nondoped organic light emitting diodes based on thermally activated delayed fluorescence emitter with quantum-well structure. ACS App. Mater. Interfaces 2016, 8, 20955–20961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Liu, H.L.; Li, X.G.; Wang, S.R. Low-temperature cross-linkable hole transporting materials through chemical doping for solution-processed green PHOLEDs. Org. Electron. 2021, 99, 106334. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Song, W.; Yook, K.S. Hyperfluorescence-based full fluorescent white organic light-emitting diodes. J. Ind. Eng. Chem. 2018, 61, 445–448. [Google Scholar] [CrossRef]
- Wu, Z.B.; Wang, Q.; Yu, L.; Chen, J.S.; Qiao, X.F.; Ahamad, T.; Alshehri, S.M.; Yang, C.L.; Ma, D.G. Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes. ACS App. Mater. Interfaces 2016, 8, 28780–28788. [Google Scholar] [CrossRef] [PubMed]
- Sheng, R.; Yang, L.; Li, A.; Chen, K.; Zhang, F.; Duan, Y.; Zhao, Y.; Chen, P. Highly efficient orange and white oleds based on ultrathin phosphorescent emitters with double reverse intersystem crossing system. J. Lumin. 2022, 246, 118852. [Google Scholar] [CrossRef]
- Wu, S.F.; Li, S.H.; Sun, Q.; Huang, C.C.; Fung, M.K. Highly efficient white organic light-emitting diodes with ultrathin emissive layers and a spacer-free structure. Sci. Rep. 2016, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Zhao, F.C.; Ma, D.G. Hybrid white oleds with fluorophors and phosphors. Mater Today 2014, 17, 175–183. [Google Scholar] [CrossRef]
- Miao, Y.Q.; Wang, K.X.; Zhao, B.; Gao, L.; Wang, Y.W.; Wang, H.; Xu, B.S.; Zhu, F.R. Manipulation and exploitation of singlet and triplet excitons for hybrid white organic light-emitting diodes with superior efficiency/cri/color stability. J. Mater. Chem. C 2017, 5, 12474–12482. [Google Scholar] [CrossRef]
- Colella, M.; Pander, P.; Pereira, D.D.; Monkman, A.P. Interfacial tadf exciplex as a tool to localize excitons, improve efficiency, and increase oled lifetime. ACS App. Mater. Interfaces 2018, 10, 40001–40007. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Pan, L.; Song, B.; Gu, J.; Zeng, J.; Xu, X.; Wu, H.; Zhao, Z.; Wang, Z.; Qin, A.; et al. Tetraphenylpyrazine decorated 1,3-di(9h-carbazol-9-yl)benzene (mcp): A new aie-active host with enhanced performance in organic light-emitting diodes. J. Mater. Chem. C 2019, 7, 11160–11166. [Google Scholar] [CrossRef]
- Jankus, V.; Data, P.; Graves, D.; McGuinness, C.; Santos, J.; Bryce, M.R.; Dias, F.B.; Monkman, A.P. Highly efficient tadf oleds: How the emitter-host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency. Adv. Funct. Mater. 2014, 24, 6178–6186. [Google Scholar] [CrossRef]
- Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S.Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 2014, 14, 330–336. [Google Scholar] [CrossRef]
- Wang, Z.H.; Su, S.J. Molecular and device design strategies for ideal performance white organic light-emitting diodes. Chem. Rec. 2019, 19, 1518–1530. [Google Scholar] [CrossRef]
- Chapran, M.; Pander, P.; Vasylieya, M.; Wiosna-Salyga, G.; Ulanski, J.; Dias, F.B.; Data, P. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex. ACS App. Mater. Interfaces 2019, 11, 13460–13471. [Google Scholar] [CrossRef]
- Berenis, D.; Kreiza, G.; Jursenas, S.; Kamarauskas, E.; Ruibys, V.; Bobrovas, O.; Adomenas, P.; Kazlauskas, K. Different risc rates in benzoylpyridine-based tadf compounds and their implications for solution-processed oleds. Dye. Pigment. 2020, 182, 9. [Google Scholar] [CrossRef]
- Luo, D.X.; Li, X.L.; Zhao, Y.; Gao, Y.; Liu, B.Q. High-performance blue molecular emitter-free and doping-free hybrid white organic light-emitting diodes: An alternative concept to manipulate charges and excitons based on exciplex and electroplex emission. ACS Photonics 2017, 4, 1566–1575. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, C.; Sun, N.; Wu, Z.; Ma, D. Simplified and high-efficiency warm/cold phosphorescent white organic light-emitting diodes based on interfacial exciplex co-host. Org. Electron. 2021, 92, 106123. [Google Scholar] [CrossRef]
- Cherpak, V.; Gassmann, A.; Stakhira, P.; Volyniuk, D.; Grazulevicius, J.V.; Michaleviciute, A.; Tomkeviciene, A.; Barylo, G.; von Seggern, H. Three-terminal light-emitting device with adjustable emission color. Org. Electron. 2014, 15, 1396–1400. [Google Scholar] [CrossRef]
- Yue, S.Z.; Zhang, S.M.; Zhang, Z.S.; Wu, Y.K.; Wang, P.; Guo, R.D.; Chen, Y.; Qu, D.L.; Wu, Q.Y.; Zhao, Y.; et al. Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure. J. Lumin. 2013, 143, 619–622. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Xie, W.F.; Duan, Y.; Chen, P.; Liu, S.Y. High-efficiency blue fluorescence organic light-emitting diodes with dpvbi inserted in the doping emmision layer. Acta Phys. Sin. 2011, 60, 6. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, S.; Xie, G.; Zhang, Z.; Zhao, L.; Luo, Y.; Chen, P.; Zhao, Y.; Liu, S. Efficient fluorescent white organic light-emitting devices based on a ultrathin 5,6,11,12-tetraphenylnaphthacene layer. Solid State Electron. 2011, 57, 35–38. [Google Scholar] [CrossRef]
- Yang, S.H.; Huang, S.F.; Chang, C.H.; Chung, C.H. High stability white organic light-emitting diode fabricated with the deposition of solvent premixed sources. J. Lumin. 2011, 131, 2106–2109. [Google Scholar] [CrossRef]
- Steinbacher, F.S.; Krause, R.; Hunze, A.; Winnacker, A. Simplified, yellow, organic light emitting diode by co-evaporation of premixed dye molecules. Org. Electron. 2011, 12, 911–915. [Google Scholar] [CrossRef]
- Jeon, T.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Forget, S.; Chenais, S.; Ishow, E. White organic light-emitting diodes with an ultra-thin premixed emitting layer. Thin Solid Films 2013, 542, 263–269. [Google Scholar] [CrossRef]
- Shin, H.; Lee, S.; Kim, K.H.; Moon, C.K.; Yoo, S.J.; Lee, J.H.; Kim, J.J. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv. Mater. 2014, 26, 4730–4734. [Google Scholar] [CrossRef]
- Sun, Y.; Giebink, N.C.; Kanno, H.; Ma, B.; Thompson, M.E.; Forrest, S.R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Tritsch, J.R.; Chan, W.L.; Wu, X.X.; Monahan, N.R.; Zhu, X.Y. Harvesting singlet fission for solar energy conversion via triplet energy transfer. Nat. Commun. 2013, 4, 7. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Chen, J.S.; Ma, D.G. Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer. Appl. Phys. Lett. 2011, 99, 3. [Google Scholar] [CrossRef]
- Yang, L.P.; Wang, X.P.; Kou, Z.Q.; Ji, C.Y. Improved efficiency in blue phosphorescent organic light-emitting diodes by the stepwise doping structure. Opt. Mater. 2017, 66, 399–403. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Yan, D.H.; Ahamad, T.; Alshehri, S.M.; Ma, D.G. High efficiency and low roll-off hybrid white organic light emitting diodes by strategically introducing multi-ultrathin phosphorescent layers in blue exciplex emitter. J. Appl. Phys. 2019, 125, 8. [Google Scholar] [CrossRef]
- Kukhta, N.A.; Matulaitis, T.; Volyniuk, D.; Ivaniuk, K.; Turyk, P.; Stakhira, P.; Grazulevicius, J.V.; Monkman, A.P. Deep-Blue HighEfficiency TTA OLED Using Para- and Meta-Conjugated Cyanotriphenylbenzene and Carbazole Derivatives as Emitter and Host. J. Phys. Chem. Lett. 2017, 8, 6199–6205. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Y.; Zhang, H.; Chen, J.; Ma, D. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off. J. Appl. Phys. 2014, 115, 244512. [Google Scholar] [CrossRef]
- Xu, L.; Tang, C.W.; Rothberg, L.J. High efficiency phosphorescent white organic light-emitting diodes with an ultra-thin red and green co-doped layer and dual blue emitting layers. Org. Electron. 2016, 32, 54–58. [Google Scholar] [CrossRef]
- Son, Y.H.; Park, M.J.; Kim, Y.J.; Yang, J.H.; Park, J.S.; Kwon, J.H. Color stable phosphorescent white organic light-emitting diodes with double emissive layer structure. Org. Electron. 2013, 14, 1183–1188. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Lee, J.; Lim, E.; Jung, B.J. 3,3′-bicarbazole-based host molecules for solution-processed phosphorescent oleds. Molecules 2018, 23, 9. [Google Scholar] [CrossRef]
- Erickson, N.C.; Holmes, R.J. Engineering efficiency roll-off in organic light-emitting devices. Adv. Funct. Mater. 2014, 24, 6074–6080. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Tian, W.; Kou, Z.Q.; Cheng, S.; Li, Y.H. The influence of the mixed host emitting layer based on the tcta and tpbi in blue phosphorescent oled. Opt. Commun. 2016, 372, 49–52. [Google Scholar] [CrossRef]
- Chen, P.; Chen, B.; Zuo, L.; Duan, Y.; Han, G.; Sheng, R.; Xue, K.; Zhao, Y. High-efficiency and superior color-stability white phosphorescent organic light-emitting diodes based on double mixed-host emission layers. Org. Electron. 2016, 31, 136–141. [Google Scholar] [CrossRef]
- Jesuraj, P.J.; Hafeez, H.; Kim, D.H.; Lee, J.C.; Lee, W.H.; Choi, D.K.; Kim, C.H.; Song, M.; Kim, C.S.; Ryu, S.Y. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent oleds by excluding interface energy transfer. J. Phys. Chem. C 2018, 122, 2951–2958. [Google Scholar] [CrossRef]
- Mu, H.C.; Jiang, Y.X.; Xie, H.F. Efficient blue phosphorescent organic light emitting diodes based on exciplex and ultrathin firpic sandwiched layer. Org. Electron. 2019, 66, 195–205. [Google Scholar] [CrossRef]
- Sheng, R.; Zuo, L.; Xue, K.; Duan, Y.; Chen, P.; Cheng, G.; Zhao, Y. Efficient white phosphorescent organic light-emitting diodes consisting of orange ultrathin and blue mixed host emission layers. J. Phy. D Appl. Phys. 2016, 49, 335101. [Google Scholar] [CrossRef]
- Zhao, J.W.; Du, X.Y.; Zheng, C.J.; He, Z.Y.; Guo, J.; Zhang, N.; Lin, H.; Tao, S.L. Reducing efficiency roll-off of phosphorescent organic light emitting diodes by using phosphor assisted energy funneling. Org. Electron. 2020, 87, 6. [Google Scholar] [CrossRef]
- Zucchi, G.; Jeon, T.; Tondelier, D.; Aldakov, D.; Thuéry, P.; Ephritikhine, M.; Geffroy, B. White electroluminescence of lanthanide complexes resulting from exciplex formation. J. Mater. Chem. 2010, 20, 2114–2120. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Chu, B.; Li, W.L.; Su, Z.S.; Peng, Q.M.; Zhao, B.; Luo, Y.S.; Jin, F.M.; Yan, X.W.; Gao, Y.; et al. Efficient triplet application in exciplex delayed-fluorescence oleds using a reverse intersystem crossing mechanism based on a ΔEST of around zero. ACS App. Mater. Interfaces 2014, 6, 11907–11914. [Google Scholar] [CrossRef]
- Jung, M.; Lee, J.Y. Exciplex hosts for blue phosphorescent organic light-emitting diodes. J. Inf. Disp. 2020, 21, 11–18. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Qiao, X.; Alshehri, S.M.; Ahamad, T.; Ma, D. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off. ACS App. Mater. Interfaces 2016, 8, 10093–10097. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Yuan, S.L.; Du, X.Y.; Li, W.; Zheng, C.J.; Tao, S.L.; Zhang, X.H. White OLEDs with an EQE of 21% at 5000 cd m2 and Ultra High Color Stability Based on Exciplex Host. Adv. Opt. Mater. 2018, 6, 8. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wei, X.F.; Li, Z.Y.; Liu, J.J.; Wang, R.F.; Hu, X.X.; Wang, P.F.; Qi, T.; Wang, Y. Interface exciplex anchoring the color stability of solution-processed thermally activated delayed fluorescent white organic light-emitting diodes. Adv. Opt. Mater. 2018, 6, 9. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, N.H.; Kim, J.W.; Kang, J.S.; Yoon, J.A.; Yoo, S.I.; Kim, W.Y.; Cheah, K.W. Enhancement of external quantum efficiency and reduction of roll-off in blue phosphorescent organic light emitt diodes using tcta inter-layer. Opt. Mater. 2014, 37, 120–124. [Google Scholar] [CrossRef]
- Wang, B.Q.; Kou, Z.Q.; Yuan, Q.S.; Fu, X.E.; Fan, Z.T.; Zhou, A. Improving cri of white phosphorescence organic light-emitting diodes by controlling exciton energy transfer in the planar heterojunction. Org. Electron. 2020, 78, 8. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, X.M.; Yu, J.; Liu, W.B.; Xie, W.F.; Zhang, L.T. Photobiologically safe high color rendering index white organic light-emitting devices. IEEE Photonics Technol. Lett. 2014, 26, 1691–1694. [Google Scholar] [CrossRef]
- Li, J.; Chen, T.Q.; Yang, J.; Cao, J. Realizing the stable spectrum in four-chromatic white organic light-emitting diodes by controlling the positions of various emitters in the bipolar interlayer. J. Phys. D-Appl. Phys. 2021, 54, 7. [Google Scholar] [CrossRef]
- Divayana, Y.; Liu, S.W.; Kyaw, A.K.K.; Sun, X.W. Efficient extraction of singlet-triplet excitons for high-efficient white organic light-emitting diode with a multilayer emission region. Org. Electron. 2011, 12, 1–7. [Google Scholar] [CrossRef]
- Yu, J.; Lin, H.; Tong, L.; Li, C.; Zhang, H.; Zhang, J.; Wang, Z.; Wei, B. Enhanced efficiency and reduced roll-off in white organic light-emitting diodes based on two ultra-thin emitting layers. Phys. Status Solidi A 2012, 210, 408–412. [Google Scholar] [CrossRef]
- Wang, B.; Kou, Z.; Tang, Y.; Yang, F.; Fu, X.; Yuan, Q. High cri and stable spectra white organic light-emitting diodes with double doped blue emission layers and multiple ultrathin phosphorescent emission layers by adjusting the thickness of spacer layer. Org. Electron. 2019, 70, 149–154. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wei, X.F.; Li, Z.Y.; Liu, J.J.; Wang, R.F.; Hu, X.X.; Wang, P.F.; Yamada-Takamura, Y.; Qi, T.; Wang, Y. Highly efficient, solution-processed organic light-emitting diodes based on thermally activated delayed-fluorescence emitter with a mixed polymer interlayer. ACS Appl. Energy Mater. 2018, 1, 543–551. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Chen, Y.; Xie, G.H.; Wu, M.Z.; Wu, Y.K.; Gou, C.H.; Guan, X.L.; Zhang, Z.S.; Yue, S.Z.; Yan, P.R.; et al. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host. Synth. Met. 2014, 187, 160–164. [Google Scholar] [CrossRef]
- Xue, K.; Sheng, R.; Chen, B.; Duan, Y.; Chen, P.; Yang, Y.; Wang, X.; Duan, Y.; Zhao, Y. Improved performance for white phosphorescent organic light-emitting diodes utilizing an orange ultrathin non-doped emission layer. RSC Adv. 2015, 5, 39097–39102. [Google Scholar] [CrossRef]
- Zhao, F.C.; Zhang, Z.Q.; Liu, Y.P.; Dai, Y.F.; Chen, J.S.; Ma, D.G. A hybrid white organic light-emitting diode with stable color and reduced efficiency roll-off by using a bipolar charge carrier switch. Org. Electron. 2012, 13, 1049–1055. [Google Scholar] [CrossRef]
- Yu, H.; Dai, X.; Yao, F.; Wei, X.; Cao, J.; Jhun, C. Efficient white phosphorescent organic light-emitting diodes using ultrathin emissive layers (<1 nm). Sci. Rep. 2018, 8, 6068. [Google Scholar] [PubMed]
- Dai, X.; Cao, J. Study on spectral stability of white organic light-emitting diodes with mixed bipolar spacer based on ultrathin non-doped phosphorescent emitting layers. Org. Electron. 2020, 78, 105563. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, J.W.; Dai, Y.F.; Sun, Q.; Yang, D.Z.; Qiao, X.F.; Chen, J.S.; Ma, D.G. High efficiency and color quality undoped phosphorescent white organic light-emitting diodes based on simple ultrathin structure in exciplex. Org. Electron. 2020, 85, 7. [Google Scholar] [CrossRef]
- Shin, H.; Lee, J.-H.; Moon, C.-K.; Huh, J.-S.; Sim, B.; Kim, J.-J. Sky-blue phosphorescent oleds with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv. Mater. 2016, 28, 4920–4925. [Google Scholar] [CrossRef]
- Liu, B.Q.; Wang, L.; Gao, D.Y.; Zou, J.H.; Ning, H.L.; Peng, J.B.; Cao, Y. Extremely high-efficiency and ultrasimplified hybrid white organic light-emitting diodes exploiting double multifunctional blue emitting layers. Light Sci. Appl. 2016, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Q.; Li, X.L.; Tao, H.; Zou, J.H.; Xu, M.; Wang, L.; Peng, J.B.; Cao, Y. Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes. J. Mater. Chem. C 2017, 5, 7668–7683. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, S.M.; Liu, Z.Y.; Yue, S.Z.; Zhang, Z.S.; Chen, Y.; Xie, G.H.; Xue, Q.; Zhao, Y.; Liu, S.Y. Hybrid white organic light-emitting diodes with improved color stability and negligible efficiency roll-off based on blue fluorescence and yellow phosphorescence. J. Lumin. 2013, 137, 59–63. [Google Scholar] [CrossRef]
- Ye, J.; Chen, Z.; An, F.F.; Sun, M.L.; Mo, H.W.; Zhang, X.H.; Lee, C.S. Achieving highly efficient simple-emission layer fluorescence/phosphorescence hybrid white organic light-emitting devices via effective confinement of triplets. ACS App. Mater. Interfaces 2014, 6, 8964–8970. [Google Scholar] [CrossRef]
- Ding, L.; Li, H.K.; Zhang, M.L.; Cheng, J.; Zhang, F.H. High-performance hybrid white organic light-emitting diodes utilizing a mixed interlayer as the universal carrier switch. Chin. Phys. Lett. 2015, 32, 4. [Google Scholar] [CrossRef]
- Hou, Y.Y.; Li, J.H.; Ji, X.X.; Wu, Y.F.; Fan, W.; Femi, I. Highly efficient and stable hybrid white organic light emitting diodes with controllable exciton behavior by a mixed bipolar interlayer. Chin. Phys. Lett. 2016, 33, 4. [Google Scholar] [CrossRef]
- Liu, B.; Xu, M.; Wang, L.; Su, Y.; Gao, D.; Tao, H.; Lan, L.; Zou, J.; Peng, J. High-performance hybrid white organic light-emitting diodes comprising ultrathin blue and orange emissive layers. Appl. Phy. Express 2013, 6, 122101. [Google Scholar] [CrossRef]
- Feng, D.X.; Dong, D.; Lian, L.; Wang, H.; He, G.F. High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission. Org. Electron. 2018, 56, 216–220. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, T.Y.; Chu, B.; Li, W.L.; Su, Z.S.; Luo, Y.S.; Li, R.G.; Yan, X.W.; Jin, F.M.; Gao, Y.; et al. Highly efficient tandem full exciplex orange and warm white oleds based on thermally activated delayed fluorescence mechanism. Org. Electron. 2015, 17, 15–21. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Zhang, H.; Zhao, B.; Chen, L.; Xue, L.; Wang, H.; Li, W. Highly efficient and spectra stable warm white organic light-emitting diodes by the application of exciplex as the excitons adjustment layer. Org. Electron. 2018, 62, 157–162. [Google Scholar] [CrossRef]
- Aksoy, E.; Danos, A.; Varlikli, C.; Monkman, A.P. Navigating cie space for efficient tadf downconversion woleds. Dye. Pigment. 2020, 183, 7. [Google Scholar] [CrossRef]
- Song, J.; Zhang, F.; Yang, L.; Chen, K.; Li, A.; Sheng, R.; Duan, Y.; Chen, P. Highly efficient, ultralow turn-on voltage red and white organic light-emitting devices based on a novel exciplex host. Adv. Mater. 2021, 2, 3677–3684. [Google Scholar] [CrossRef]
- Chen, Y.W.; Sun, Q.; Dai, Y.F.; Yang, D.Z.; Qiao, X.F.; Ma, D.G. El properties and exciton dynamics of high-performance doping-free hybrid woleds based on 4p-npd/bepp2 heterojunction as blue emitter. Adv. Opt. Mater. 2019, 7, 11. [Google Scholar] [CrossRef]
- Kim, B.S.; Lee, J.Y. Interlayer free hybrid white organic light-emitting diodes with red/blue phosphorescent emitters and a green thermally activated delayed fluorescent emitter. Org. Electron. 2015, 21, 100–105. [Google Scholar] [CrossRef]
- Huang, C.C.; Xie, Y.M.; Wu, S.F.; Li, S.H.; Liang, J.J.; Fung, M.K. Thermally activated delayed fluorescence-based tandem oleds with very high external quantum efficiency. Phys. Status Solidi A 2017, 214, 6. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Z.; Hou, S.; Yu, J. Color stable and highly efficient hybrid white organic light-emitting devices using heavily doped thermally activated delayed fluorescence and ultrathin non-doped phosphorescence layers. Org. Electron. 2017, 43, 112–120. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, W.; Chen, C.; Zhang, E.; Tang, J.; Yan, D.; Sun, Y.; Chen, P.; Sheng, R. Highly efficient fluorescent organic electroluminescent diodes based on doping-free phosphorescent sensitization system. Org. Electron. 2023, 116, 106772. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.X.; Yuan, Y.; Hu, Y.; Tian, Q.S.; Jiang, Z.Q.; Liao, L.S. Alleviating efficiency roll-off of hybrid single-emitting layer woled utilizing bipolar tadf material as host and emitter. ACS App. Mater. Interfaces 2019, 11, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Jiang, H.; Wang, J.; Guan, Y.; Hua, J.; Gao, X.; Bo, B.; Wang, J. High-efficiency and color-stable warm white organic light-emitting diodes utilizing energy transfer from interface exciplex. Org. Electron. 2018, 62, 524–529. [Google Scholar] [CrossRef]
- Ying, S.; Yao, J.; Chen, Y.; Ma, D. High efficiency (∼100 lm w−1) hybrid woleds by simply introducing ultrathin non-doped phosphorescent emitters in a blue exciplex host. J. Mater. Chem. C 2018, 6, 7070–7076. [Google Scholar] [CrossRef]
- Wang, K.X.; Gao, Z.X.; Miao, Y.Q.; Gao, L.; Zhao, B.; Xu, H.X.; Wang, Z.Q.; Wang, H.; Xu, B.S. Improved color stability of complementary woled with symmetrical doped phosphors in single host: Experimental verification and mechanism analysis. RSC Adv. 2017, 7, 33782–33788. [Google Scholar] [CrossRef]
- Luo, D.X.; Xiao, P.; Liu, B.Q. Doping-free white organic light-emitting diodes. Chem. Rec. 2019, 19, 1596–1610. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Z.; Chen, X.J.; Xie, Z.L.; Liu, T.T.; Chi, Z.H.; Yang, Z.Y.; Zhang, Y.; Aldred, M.P.; Chi, Z.G. Efficient triplet harvesting in fluorescence-tadf hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration. J. Mater. Chem. C 2018, 6, 4257–4264. [Google Scholar] [CrossRef]
- Tsuji, T.; Naka, S.; Okada, H.; Onnagawa, H. Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion. Appl. Phys. Lett. 2002, 81, 3329–3331. [Google Scholar] [CrossRef]
- Li, Y.; Xu, K.; Wen, X.M.; Zhang, L.T.; Yin, Y.M.; Liu, S.H.; Piao, X.C.; Xie, W.F. High general and special color rendering index white organic light-emitting device with bipolar homojunction emitting layers. Org. Electron. 2013, 14, 1946–1951. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, Y.; Li, C.; Liu, S. High colour rendering index non-doped-type white organic light-emitting devices with a rgb-stacked multilayer structure. Semicond. Sci. Technol. 2005, 20, L57–L60. [Google Scholar] [CrossRef]
- Yang, H. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer. J. Lumin. 2013, 142, 231–235. [Google Scholar] [CrossRef]
- Chen, K.L.; Huang, C.J.; Chen, W.R.; Lin, F.Y.; Meen, T.H.; Kang, C.C. Optimal color stability for white organic light-emitting diode (woled) by using multiple-ultra-thin layers (mutl). Int. J. Photoenergy 2013, 2013, 726872. [Google Scholar] [CrossRef]
- Xu, T.; Yang, M.; Liu, J.; Wu, X.; Murtaza, I.; He, G.; Meng, H. Wide color-range tunable and low roll-off fluorescent organic light emitting devices based on double undoped ultrathin emitters. Org. Electron. 2016, 37, 93–99. [Google Scholar] [CrossRef]
- Song, W.; Meng, M.; Kim, Y.H.; Moon, C.B.; Jhun, C.G.; Lee, S.Y.; Wood, R.; Kim, W.Y. High efficient and color stable woled using double white emissive layer. J. Lumin. 2012, 132, 2122–2125. [Google Scholar] [CrossRef]
- Mao, H.T.; Li, G.F.; Shan, G.G.; Wang, X.L.; Su, Z.M. Recent progress in phosphorescent ir(iii) complexes for nondoped organic light-emitting diodes. Coord. Chem. Rev. 2020, 413, 36. [Google Scholar] [CrossRef]
- Guo, L.Y.; Zhang, X.L.; Zhuo, M.J.; Liu, C.; Chen, W.Y.; Mi, B.X.; Song, J.; Li, Y.F.; Gao, Z.Q. Non-interlayer and color stable woleds with mixed host and incorporating a new orange phosphorescent iridium complex. Org. Electron. 2014, 15, 2964–2970. [Google Scholar] [CrossRef]
- Xiao, P.; Huang, J.H.; Yu, Y.C.; Liu, B.Q. Recent developments in tandem white organic light-emitting diodes. Molecules 2019, 24, 28. [Google Scholar] [CrossRef]
- Hung, W.Y.; Fang, G.C.; Lin, S.W.; Cheng, S.H.; Wong, K.T.; Kuo, T.Y.; Chou, P.T. The first tandem, all-exciplex-based woled. Sci. Rep. 2014, 4, 6. [Google Scholar] [CrossRef]
- Cho, H.; Song, J.; Kwon, B.H.; Choi, S.; Lee, H.; Joo, C.W.; Ahn, S.D.; Kang, S.Y.; Yoo, S.; Moon, J. Stabilizing color shift of tandem white organic light-emitting diodes. J. Ind. Eng. Chem. 2019, 69, 414–421. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, M.K.; Liu, M.H.; Chen, Y.; Wang, J.L.; Zhang, X.; Zhang, J.J.; Lai, W.Y.; Huang, W. Highly efficient tandem organic light-emitting devices adopting a nondoped charge-generation unit and ultrathin emitting layers. Org. Electron. 2018, 53, 353–360. [Google Scholar] [CrossRef]
- Baek, H.I.; Lee, C.; Chin, B.D. Comparison of the carrier mobility, unipolar conduction, and light emitting characteristics of phosphorescent host-dopant system. Synth. Met. 2012, 162, 2355–2360. [Google Scholar] [CrossRef]
- Tan, T.; Ouyang, S.; Xie, Y.; Wang, D.; Zhu, D.; Xu, X.; Fong, H.H. Balanced white organic light-emitting diode with non-doped ultra-thin emissive layers based on exciton management. Org. Electron. 2015, 25, 232–236. [Google Scholar] [CrossRef]
- Xue, K.; Sheng, R.; Duan, Y.; Chen, P.; Chen, B.; Wang, X.; Duan, Y.; Zhao, Y. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers. Org. Electron. 2015, 26, 451–457. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Cheng, J.; Li, D.; Chen, H.; Yu, J.; Li, L. Enhanced color stability for white organic light-emitting diodes based on dual ultra-thin emitting layer. Org. Electron. 2017, 50, 147–152. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Ma, D. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes. ACS App. Mater. Interfaces 2013, 5, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shi, C.; Zhao, C.; Wu, Z.; Sun, N.; Chen, J.; Xie, Z.; Ma, D. High efficiency phosphorescent white organic light-emitting diodes with low efficiency roll-off achieved by strategic exciton management based on simple ultrathin emitting layer structures. J. Mater. Chem. C 2017, 5, 12833–12838. [Google Scholar] [CrossRef]
- Lv, M.M.; Zhang, W.; Ning, Y.J.; Jing, W.Z.; Song, D.D.; Zhao, S.L.; Xu, Z.; Fan, L.; Qiao, B. Interfacial exciplex host to release interfacial accumulated charges for highly efficient and bright solution-processed white organic light-emitting diodes. Adv. Mater. Interfaces 2022, 9, 8. [Google Scholar] [CrossRef]
- Angioni, E.; Chapran, M.; Ivaniuk, K.; Kostiv, N.; Cherpak, V.; Stakhira, P.; Lazauskas, A.; Tamulevicius, S.; Volyniuk, D.; Findlay, N.J.; et al. A single emitting layer white oled based on exciplex interface emission. J. Mater. Chem. C 2016, 4, 3851–3856. [Google Scholar] [CrossRef]
- Ying, S.; Chen, Y.; Yao, J.; Sun, Q.; Dai, Y.; Yang, D.; Qiao, X.; Chen, J.; Ma, D. High efficiency doping-free warm-white organic light-emitting diodes with strategic-tuning of radiative excitons by combining interfacial exciplex with multi-ultrathin emissive layers. Org. Electron. 2020, 85, 105876. [Google Scholar] [CrossRef]
- Li, M.G.; Dai, Y.Z.; Zhang, Y.; Wang, J.; Tao, Y.; Zheng, C.; Chen, R.F.; Huang, W. Highly efficient ultrathin fluorescent oleds through synergistic sensitization effects of phosphor and exciplex. ACS Appl. Electron. Mater. 2020, 2, 3704–3710. [Google Scholar] [CrossRef]
- Zhao, F.C.; Zhu, L.P.; Liu, Y.P.; Wang, Y.; Ma, D.G. Doping-free hybrid white organic light-emitting diodes with fluorescent blue, phosphorescent green and red emission layers. Org. Electron. 2015, 27, 207–211. [Google Scholar] [CrossRef]
- Liu, B.; Tao, H.; Wang, L.; Gao, D.; Liu, W.; Zou, J.; Xu, M.; Ning, H.; Peng, J.; Cao, Y. High-performance doping-free hybrid white organic light-emitting diodes: The exploitation of ultrathin emitting nanolayers (<1 nm). Nano Energy 2016, 26, 26–36. [Google Scholar]
- Miao, Y.; Wang, K.; Zhao, B.; Gao, L.; Tao, P.; Liu, X.; Hao, Y.; Wang, H.; Xu, B.; Zhu, F. High-efficiency/cri/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer. Nanophotonics 2018, 7, 295–304. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, H.; Wang, Z.; Miao, Y.; Wang, Z.; Li, J.; Wang, H.; Hao, Y.; Li, W. Non-doped white organic light-emitting diodes with superior efficiency/color stability by employing ultra-thin phosphorescent emitters. J. Mater. Chem. C 2018, 6, 4250–4256. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.J.; Wang, R.; Chi, Z.G.; Yu, J.S. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter. J. Lumin. 2017, 184, 287–292. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, G.; Jiang, W.; Lang, J.; Jiang, X. High performance tadf-phosphorescence hybrid warm-white organic light-emitting diodes with a simple fully doping-free device structure. J. Appl. Phys. 2020, 128, 165501. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Q.; Xu, Z.P.; Zou, J.H.; Tao, H.; Xu, M.; Gao, D.Y.; Lan, L.F.; Wang, L.; Ning, H.L.; Peng, J.B. High-performance hybrid white organic light-emitting diodes employing p-type interlayers. J. Ind. Eng. Chem. 2015, 27, 240–244. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, X.L.; Ma, Z.R.; Cai, X.Y.; Cai, C.S.; Su, S.J. Exciton-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (woleds) based on a delayed fluorescence assistant host. Adv. Funct. Mater. 2018, 28, 9. [Google Scholar] [CrossRef]
- Liao, X.; An, K.; Cheng, J.; Li, Y.; Meng, X.; Yang, X.; Li, L. High efficiency ultra-thin doping-free woled based on blue thermally activated delayed fluorescence inter-layer switch. Appl. Surf. Sci. 2019, 487, 610–615. [Google Scholar] [CrossRef]
- Xue, C.; Jiang, X.; Zhang, G.; Jiang, W.; Lang, J.; Zhang, Y. Bipolar tadf interlayer for high performance hybrid woleds with an ultrathin non-doped emissive layer architecture. Opt. Mater. 2021, 111, 110592. [Google Scholar] [CrossRef]
Devices | CIE (x, y) | CRI | Turn-On Voltage (V) | EQEmax/PEmax/CEmax |
---|---|---|---|---|
%/Lm W−1/cd A−1 | ||||
Ref. [38] | (0.345, 0.416) a | - | ~3 | -/5.5/8.69 |
Ref. [41] | (0.34, 0.34) a | 72 | 4.5 | 1.2%/2.3/- |
Ref. [45] | (0.45, 0.45) a | 87 | - | 15.5%/-/- |
Ref. [49] | (0.35, 0.42) a | 65 | 2.7 | 22.2/53.4/57.1 |
Ref. [50] | (0.458, 0.448) a | - | 3.91 | 18.5/34.8/- |
Ref. [55] | (0.32, 0.39) a | 55 | 2.71 | -/39.8/40.8 |
Ref. [58] | (0.382, 0.437) a | - | 2.69 | -/32.2/33.8 |
Ref. [63] | (0.42, 0.51) a | - | 2.4 | 20/75.3/64.5 |
Ref. [34] | (0.25, 0.39) b | - | 2.6 | 28.37/87.17/72.17 |
Ref. [34] | (0.33, 0.44) b | - | 2.6 | 23.8/81.1/67.7 |
Ref. [71] | (0.50, 0.43) a | 80 | - | -/22.9/29.2 |
Ref. [72] | (0.36, 0.44) d | 85 | - | -/33.42/31.91 |
Ref. [75] | (0.40, 0.45) a | - | 3.03 | -/40.1/38.3 |
Ref. [77] | (0.329, 0.479) c | 54.2 | 2.74 | 15.4/48.8/47.8 |
Ref. [78] | (0.397, 0.523) a | 49 | 2.74 | 17.7/60/60.2 |
Ref. [79] | (0.496, 0.423) e | 85 | 2.4 | 21.1/46.0/36.4 |
Ref. [79] | (0.459, 0.426) a | 81 | - | 26.1/50/40 |
Ref. [87] | (0.301, 0.311) f | 75 | 2.7 | -/8.9/7.6 |
Ref. [90] | (0.436, 0.467) d | - | 3.0 | 15.3/34.9/38.8 |
Ref. [92] | (0.33, 0.33) a | 52 | 2.2 | 12.4/34.1/32.6 |
Ref. [22] | (0.384, 0.459) f | - | 2.7 | -/60.9/52.4 |
Ref. [96] | (0.262, 0.355) a | - | 3.1 | 15.7/45.8/45.2 |
Ref. [97] | (0.459, 0.483) g | - | 2.6 | -/38.5/36.8 |
Ref. [99] | (0.44, 0.51) a | - | 2.6 | 22.3/79.2- |
Ref. [100] | (0.420, 0.497) h | - | 2.35 | 22.45/97.1/74.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Hu, X.; Kong, F.; Tang, J.; Yan, D.; Wang, J.; Liu, Y.; Sun, Y.; Sheng, R.; Chen, P. Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers. Micromachines 2024, 15, 626. https://doi.org/10.3390/mi15050626
Zhao W, Hu X, Kong F, Tang J, Yan D, Wang J, Liu Y, Sun Y, Sheng R, Chen P. Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers. Micromachines. 2024; 15(5):626. https://doi.org/10.3390/mi15050626
Chicago/Turabian StyleZhao, Wencheng, Xiaolin Hu, Fankang Kong, Jihua Tang, Duxv Yan, Jintao Wang, Yuru Liu, Yuanping Sun, Ren Sheng, and Ping Chen. 2024. "Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers" Micromachines 15, no. 5: 626. https://doi.org/10.3390/mi15050626
APA StyleZhao, W., Hu, X., Kong, F., Tang, J., Yan, D., Wang, J., Liu, Y., Sun, Y., Sheng, R., & Chen, P. (2024). Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers. Micromachines, 15(5), 626. https://doi.org/10.3390/mi15050626