Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability
Abstract
1. Introduction
2. Materials and Methods
Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic Textiles for Wearable Point-of-Care Systems. Chem. Rev. 2021, 122, 3259–3291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Huang, Z.; Yang, J. A New Class of Electronic Devices Based on Flexible Porous Substrates. Adv. Sci. 2022, 9, 2105084. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Mu, J.H.; Song, Y.J.; Chen, S.; Xu, F. Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces 2023, 15, 9820–9829. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, N.; Liu, H.; Dong, Y.; Han, L.; Wan, S.; Dou, G.; Sun, L. Directional Sweat Transport and Breathable Sandwiched Electrodes for Electrocardiogram Monitoring System. Adv. Mater. Interfaces 2021, 9, 2101602. [Google Scholar] [CrossRef]
- Li, J.; Pan, X.; Zhang, Y.; Liu, Y.; Wang, C.; Wan, Y.; Tao, J.; Bao, R.; Pan, C. Ultrathin breathable and stretchable electronics based on patterned nanofiber composite network. Mater. Today Nano 2023, 23, 100359. [Google Scholar] [CrossRef]
- Mohseni Taromsari, S.; Shi, H.H.; Salari, M.; Eskandarian, L.; Habibpour, S.; Yu, A.; Park, C.B.; Naguib, H.E. Electromechanical properties and physiological sensing enhancement of an in-situ assembled 3-D nanostructure: A comprehensive effect assessment of tannic acid treated 2-D Ti3C2Tx and 1-D graphene nanoribbon (GnR). Carbon 2023, 213, 118184. [Google Scholar] [CrossRef]
- Liang, X.P.; Zhu, M.J.; Li, H.F.; Dou, J.X.; Jian, M.Q.; Xia, K.L.; Li, S.; Zhang, Y.Y. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv. Funct. Mater. 2022, 32, 2200162–2200170. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Cao, S.T.; Wang, J.; Zhu, H.Y.; Wang, J.C.; Yang, S.N.; Wang, X.; Kong, D.S. Bright Stretchable Electroluminescent Devices based on Silver Nanowire Electrodes and High-k Thermoplastic Elastomers. ACS Appl. Mater. Interfaces 2018, 10, 44760–44767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Yin, L.; Bai, Y.Z.; Liu, S.Y.; Wang, L.; Zhou, Y.; Hou, C.; Yang, Z.Y.; Wu, H.; Ma, J.J.; et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.A.; Wu, H.; Zhu, C.; Xiong, W.N.; Chen, F.R.; Xiao, L.; Liu, J.P.; Wang, K.X.; Li, H.Y.; Ye, D.; et al. Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces. Int. J. Extrem. Manuf. 2021, 3, 14. [Google Scholar] [CrossRef]
- Wang, P.; Sun, G.; Yu, W.; Li, G.; Meng, C.; Guo, S. Wearable, ultrathin and breathable tactile sensors with an integrated all-nanofiber network structure for highly sensitive and reliable motion monitoring. Nano Energy 2022, 104, 107883. [Google Scholar] [CrossRef]
- Wang, P.; Yu, W.; Li, G.; Meng, C.; Guo, S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem. Eng. J. 2023, 452, 139174. [Google Scholar] [CrossRef]
- Wen, Y.; Zhao, R.; Yin, X.; Shi, Y.; Fan, H.; Zhou, Y.; Tan, L. Antibacterial and Antioxidant Composite Fiber Prepared from Polyurethane and Polyacrylonitrile Containing Tea Polyphenols. Fibers Polym. 2020, 21, 103–110. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, Z.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.; Du, J.; Chen, S.; et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wan, C.; Wang, T.; Li, Q.; Chen, G.; Wang, J.; Liu, Z.; Yang, H.; Liu, X.; Chen, X. Water-Resistant Conformal Hybrid Electrodes for Aquatic Endurable Electrocardiographic Monitoring. Adv. Mater. 2020, 32, e2001496. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Lin, M.; Yin, L.; De la paz, E.; Pei, K.; Sonsa-ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748. [Google Scholar] [CrossRef]
- Sun, T.; Hui, J.; Zhou, L.; Lin, B.; Sun, H.; Bai, Y.; Zhao, J.; Mao, H. A low-cost and simple-fabricated epidermal sweat patch based on “cut-and-paste” manufacture. Sens. Actuators B Chem. 2022, 368, 132184. [Google Scholar] [CrossRef]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Adv. Sci. 2020, 8, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, Y.C.; Nicolini, L.; Pasupathy, P.; Sacks, J.; Su, B.; Yang, R.; Sanchez, D.; Chang, Y.F.; Wang, P.; et al. “Cut-and-Paste” Manufacture of Multiparametric Epidermal Sensor Systems. Adv. Mater. 2015, 27, 6423–6430. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Guo, M.; Pu, L.; Dong, J.; Li, L.; Ma, P.; Huang, Y.; Liu, T. Wearable nanofibrous tactile sensors with fast response and wireless communication. Chem. Eng. J. 2023, 451, 138578. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Yuan, W.; Zhou, X.; Lin, Y.; Zhu, G.; Li, J.; Zhong, T.; Su, W.; Cui, Z. Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS Appl. Mater. Interfaces 2022, 14, 29144–29155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Wang, S.L.; Yin, J.Y.; Wang, J.J.; Manshaii, F.; Xiao, X.; Zhang, T.Q.; Bao, H.; Jiang, S.; Chen, J. Flexible Metasurfaces for Multifunctional Interfaces. ACS Nano 2024, 18, 2685–2707. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Yin, L.T.; Xiang, S.F.; Yu, S.; Johnson, H.M.; Wang, S.L.; Yin, J.Y.; Zhao, J.; Luo, Y.; Chu, P.K. Unleashing the Potential of MXene-Based Flexible Materials for High-Performance Energy Storage Devices. Adv. Sci. 2024, 11, 30. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Z.Y.; Hou, C.; Lv, X.D.; Jiang, S.; Ye, D.; Huang, Y.A. Flexible, monolithic piezoelectric sensors for large-area structural impact monitoring via MUSIC-assisted machine learning. Struct. Health Monit. 2024, 23, 121–136. [Google Scholar] [CrossRef]
- Jost, V. Packaging related properties of commercially available biopolymers—An overview of the status quo. Express Polym. Lett. 2018, 12, 429–435. [Google Scholar] [CrossRef]
- Kang, K.S.; Jee, C.; Bae, J.-H.; Jung, H.J.; Kim, B.J.; Huh, P. Effect of soft/hard segments in poly (tetramethylene glycol)-Polyurethane for water barrier film. Prog. Org. Coat. 2018, 123, 238–241. [Google Scholar] [CrossRef]
- Wang, Q.L.; Zhang, G.N.; Zhang, H.Y.; Duan, Y.Q.; Yin, Z.P.; Huang, H.A. High-Resolution, Flexible, and Full-Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionic-Liquid-Based Ink. Adv. Funct. Mater. 2021, 31, 9. [Google Scholar] [CrossRef]
- Yin, R.; Yang, S.; Li, Q.; Zhang, S.; Liu, H.; Han, J.; Liu, C.; Shen, C. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, F.; Wang, L.; Feng, Y.; Yu, D.; Yang, T.; Wu, M.; Petru, M. High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices. Appl. Compos. Mater. 2022, 29, 1621–1636. [Google Scholar] [CrossRef]
- Zhu, H.-W.; Gao, H.-L.; Zhao, H.-Y.; Ge, J.; Hu, B.-C.; Huang, J.; Yu, S.-H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 13, 2879–2884. [Google Scholar] [CrossRef]
- Zou, X.; Xue, J.; Li, X.; Chan, C.P.Y.; Li, Z.; Li, P.; Yang, Z.; Lai, K.W.C. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. ACS Appl. Mater. Interfaces 2023, 15, 19374–19383. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Lin, Y.; Ma, X.H.; Zhang, J.X.; Li, D.C.; Kong, D.S. Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites. Nano Res. 2023, 16, 10412–10419. [Google Scholar] [CrossRef]
- Wang, Y.H.; Tang, T.Y.; Xu, Y.; Bai, Y.Z.; Yin, L.; Li, G.; Zhang, H.M.; Liu, H.C.; Huang, Y.A. All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. npj Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Xiong, W.N.; Zhu, C.; Guo, D.L.; Hou, C.; Yang, Z.X.; Xu, Z.Y.; Qiu, L.; Yang, H.; Li, K.; Huang, Y.A. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 2021, 90, 11. [Google Scholar] [CrossRef]
- Zhuang, M.Q.; Yin, L.; Wang, Y.H.; Bai, Y.Z.; Zhan, J.; Hou, C.; Yin, L.T.; Xu, Z.Y.; Tan, X.H.; Huang, Y.A. Highly Robust and Wearable Facial Expression Recognition via Deep-Learning-Assisted, Soft Epidermal Electronics. Research 2021, 2021, 14. [Google Scholar] [CrossRef]
- Huang, Y.A.; Zhu, C.; Xiong, W.N.; Wang, Y.; Jiang, Y.G.; Qiu, L.; Guo, D.L.; Hou, C.; Jiang, S.; Yang, Z.X.; et al. Flexible smart sensing skin for "Fly-by-Feel" morphing aircraft. Sci. China-Technol. Sci. 2022, 65, 1–29. [Google Scholar] [CrossRef]
- Xiong, W.N.; Feng, H.; Liwang, H.S.; Li, D.; Yao, W.B.; Duolikun, D.; Zhou, Y.L.; Huang, Y.A. Multifunctional Tactile Feedbacks Towards Compliant Robot Manipulations via 3D-Shaped Electronic Skin. IEEE Sens. J. 2022, 22, 9046–9056. [Google Scholar] [CrossRef]
- Yin, Z.P.; Huang, Y.A.; Yang, H.; Chen, J.K.; Duan, Y.Q.; Chen, W. Flexible electronics manufacturing technology and equipment. Sci. China-Technol. Sci. 2022, 65, 1940–1956. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Qu, Y.P.; Yin, L.T.; Cheng, W.N.; Huang, Y.A.; Fan, R.H. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos. Sci. Technol. 2022, 223, 6. [Google Scholar] [CrossRef]
- Bai, Y.Z.; Yin, L.T.; Hou, C.; Zhou, Y.L.; Zhang, F.; Xu, Z.Y.; Li, K.; Huang, Y.A. Response Regulation for Epidermal Fabric Strain Sensors via Mechanical Strategy. Adv. Funct. Mater. 2023, 33, 13. [Google Scholar] [CrossRef]
- Zhi, C.W.; Shi, S.; Zhang, S.; Si, Y.F.; Yang, J.Q.; Meng, S.; Fei, B.; Hu, J.L. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 2023, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Mahmood, M.; Lee, Y.; Kim, N.K.; Kwon, S.; Herbert, R.; Kim, D.; Cho, H.C.; Yeo, W.H. All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring. Adv. Sci. 2019, 6, 1900939. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Li, X.; Jian, J.; Wu, Q.; Wei, Y.; Shuai, H.; Hirtz, T.; Zhi, Y.; Deng, G.; Wang, Y.; et al. Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Appl. Mater. Interfaces 2020, 12, 49945–49956. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Qiao, Y.; Li, D.; Huang, X.; Yang, L.; Yan, A.; Chen, Z.; Xu, J.; Tan, X.; Jian, J.; et al. Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 2023, 455, 140690. [Google Scholar] [CrossRef]
- Chen, F.R.; Gai, M.X.; Sun, N.N.; Xu, Z.Y.; Liu, L.; Yu, H.Y.; Bian, J.; Huang, Y.A. Laser-driven hierarchical “gas-needles” for programmable and high-precision proximity transfer printing of microchips. Sci. Adv. 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Cheng, W.N.; Bai, Y.Z.; Hou, C.; Li, K.; Huang, Y.A. Rise of flexible high-temperature electronics. Rare Met. 2023, 42, 1773–1777. [Google Scholar] [CrossRef]
- Qu, Y.P.; Zhou, Y.L.; Luo, Y.; Liu, Y.; Ding, J.F.; Chen, Y.L.; Gong, X.; Yang, J.L.; Peng, Q.; Qi, X.S. Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 2024, 43, 796–809. [Google Scholar] [CrossRef]
- Chen, E.; Jiang, J.; Su, R.; Gao, M.; Zhu, S.; Zhou, J.; Huo, Y. A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Heart Rhythm 2020, 17, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, J.W.; Cui, X.H.; Liu, X.N.; Chang, X.H.; Zhu, Y.T. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain. ACS Appl. Mater. Interfaces 2022, 14, 30268–30278. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-W.; Lee, J.C.-M.; Chuang, K.-C.; Chiu, C.-W. Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog. Org. Coat. 2023, 176, 107378. [Google Scholar] [CrossRef]
- Himori, S.; Sakata, T. Free-standing conductive hydrogel electrode for potentiometric glucose sensing. RSC Adv. 2022, 12, 5369–5373. [Google Scholar] [CrossRef]
- Horev, Y.D.; Maity, A.; Zheng, Y.; Milyutin, Y.; Khatib, M.; Yuan, M.; Suckeveriene, R.Y.; Tang, N.; Wu, W.; Haick, H. Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion. Adv. Mater. 2021, 33, 2102488. [Google Scholar] [CrossRef]
- Gopi, C.; Vinodh, R.; Sambasivam, S.; Obaidat, I.M.; Kim, H.J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. J. Energy Storage 2020, 27, 101035–101059. [Google Scholar]
- Han, J.K.; Yang, J.K.; Gao, W.W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155. [Google Scholar] [CrossRef]
- Ma, Y.J.; Zhang, Y.C.; Cai, S.S.; Han, Z.Y.; Liu, X.; Wang, F.L.; Cao, Y.; Wang, Z.H.; Li, H.F.; Chen, Y.H.; et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, X.; Yin, Y.; Ma, G.; Jia, Y.; Deng, J.; Pan, K. Flexible janus electrospun nanofiber films for wearable triboelectric nanogenerator. Adv. Mater. Technol. 2019, 5, 1900859. [Google Scholar] [CrossRef]
- Qiao, Y.; Gou, G.; Shuai, H.; Han, F.; Liu, H.; Tang, H.; Li, X.; Jian, J.; Wei, Y.; Li, Y.; et al. Electromyogram-strain synergetic intelligent artificial throat. Chem. Eng. J. 2022, 449, 137741. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Q.S.; Ding, C.; Wang, J.Y.; Yuan, W.; Liu, Z.Y.; Su, W.M.; Cui, Z. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 2022, 15, 4590–4598. [Google Scholar] [CrossRef]
- Tian, B.; Fang, Y.; Liang, J.; Zheng, K.; Guo, P.; Zhang, X.; Wu, Y.; Liu, Q.; Huang, Z.; Cao, C.; et al. Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems. Small 2022, 18, 2107298. [Google Scholar] [CrossRef] [PubMed]
- Pinnagoda, J.; Tupkek, R.A.; Agner, T.; Serup, J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermat. 1990, 22, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhou, Y.; Cao, S.; Wang, Y.; Zhang, J.; Feng, S.; Wang, J.; Li, D.; Kong, D. Ultrastretchable and Washable Conductive Microtextiles by Coassembly of Silver Nanowires and Elastomeric Microfibers for Epidermal Human–Machine Interfaces. ACS Mater. Lett. 2021, 3, 912–920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Yang, C.; Li, D. Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. Micromachines 2024, 15, 598. https://doi.org/10.3390/mi15050598
Zhao Z, Yang C, Li D. Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. Micromachines. 2024; 15(5):598. https://doi.org/10.3390/mi15050598
Chicago/Turabian StyleZhao, Zijia, Chaopeng Yang, and Dongchan Li. 2024. "Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability" Micromachines 15, no. 5: 598. https://doi.org/10.3390/mi15050598
APA StyleZhao, Z., Yang, C., & Li, D. (2024). Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. Micromachines, 15(5), 598. https://doi.org/10.3390/mi15050598