Thermal Conductivity Gas Sensors for High-Temperature Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Platinum Microheater
2.2. Laser Fabrication of Ceramic Package for Sensor
2.3. Final Assembling of Sensor
3. Results
3.1. Technology Fabrication Aspects
- Platinum wire welding on metallization;
- Creation of sealed vias by metallization;
- Elimination of manual labor in the manufacture of a batch of sensors;
- Selection of metallization, which is soldered with standard tin, that contain solders.
3.2. Thermal Conductivity Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gardner:, E.L.W.; Gardner, J.W.; Udrea, F. Micromachined Thermal Gas Sensors—A Review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- SGX Sensortech. VQ5 Series Thermal Conductivity Gas Detector Elements. Available online: https://www.sgxsensortech.com/content/uploads/2014/07/VQ51-VQ5-Thermal-Conductivity-Pellistor-Pair-%E2%80%93-2v_175mA1.pdf (accessed on 3 December 2023).
- SGX Sensortech. VQ500 Series EU Declaration of Conformity EUD-0066. Available online: https://www.sgxsensortech.com/content/uploads/2014/08/EUD-0066-VQ500-DoC-Special-Instructions-V2.pdf (accessed on 3 December 2023).
- RS Product Solutions. Available online: https://www.rsproductsolutions.nl/Thermal-Conductivity-Gauge/ (accessed on 3 December 2023).
- Neroxis. MTCS 2200—Gas Micro Thermal Conductivity Sensor for Gas. Available online: https://www.neroxis.ch/wp-content/uploads/2020/04/DPM-18-090-002-E-MTCS-2200-Micro-Thermal-Conductivity-Sensor-for-Gas_Brochure_EN.pdf (accessed on 3 December 2023).
- JSC Plant “Mars”. Metal-Glass Packages of Type KT-1, KI-1(TO-18). Available online: https://z-mars.ru/produktsiya/korpusa-pp/metallosteklyannye/korpusa-metallosteklyannye-tipa-kt-1-ki-1to-18.html (accessed on 3 December 2023).
- Samotaev, N.; Dzhumaev, P.; Oblov, K.; Pisliakov, A.; Obraztsov, I.; Ducso, C.; Biro, F. Silicon MEMS Thermocatalytic Gas Sensor in Miniature Surface Mounted Device Form. Chemosensors 2021, 9, 340. [Google Scholar] [CrossRef]
- Kim, M.-S.; Nishikawa, H. Thermal stability of electroless nickel/immersion gold surface finish for direct bond copper. In Proceedings of the 5th Electronics System-Integration Technology Conference (ESTC), Helsinki, Finland, 16–18 September 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Sešek, A.; Makarovič, K. Metallization, Material Selection, and Bonding of Interconnections for Novel LTCC and HTCC Power Modules. Materials 2022, 15, 1036. [Google Scholar] [CrossRef] [PubMed]
- Samotaev, N.; Litvinov, A.; Oblov, K.; Etrekova, M.; Podlepetsky, B.; Dzhumaev, P. Combination of Material Processing and Characterization Methods for Miniaturization of Field-Effect Gas Sensor. Sensors 2023, 23, 514. [Google Scholar] [CrossRef] [PubMed]
- Samotaev, N.; Oblov, K.; Dzhumaev, P.; Fritsch, M.; Mosch, S.; Vinnichenko, M.; Trofimenko, N.; Baumgärtner, C.; Fuchs, F.-M.; Wissmeier, L. Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors. Micromachines 2021, 12, 1440. [Google Scholar] [CrossRef] [PubMed]
- Karelin, A.; Baranov, A.M.; Akbari, S.; Mironov, S.; Karpova, E. Measurement Algorithm for Determining Unknown Flam-mable Gas Concentration Based on Temperature Sensitivity of Catalytic Sensor. IEEE Sens. J. 2019, 19, 4173–4180. [Google Scholar] [CrossRef]
- Ivanov, I.I.; Baranov, A.M.; Talipov, V.A.; Mironov, S.M.; Akbari, S.; Kolesnik, I.V.; Orlova, E.D.; Napolskii, K.S. Investigation of catalytic hydrogen sensors with platinum group catalysts. Sens. Actuators B Chem. 2021, 346, 130515. [Google Scholar] [CrossRef]
- Karpova, E.; Mironov, S.; Suchkov, A.; Karelin, A.; Karpov, E.E.; Karpov, E.F. Increase of catalytic sensors stability. Sens. Actuators B Chem. 2014, 197, 358–363. [Google Scholar] [CrossRef]
- Somov, A.; Baranov, A.; Suchkov, A.; Karelin, A.; Mironov, S.; Karpova, E. Improving interoperability of catalytic sensors. Sens. Actuators B Chem. 2015, 221, 1156–1161. [Google Scholar] [CrossRef]
- Zhukova, V.; Corte-Leon, P.; Blanco, J.M.; Ipatov, M.; Gonzalez-Legarreta, L.; Gonzalez, A.; Zhukov, A. Development of Magnetically Soft Amorphous Microwires for Technological Applications. Chemosensors 2022, 10, 26. [Google Scholar] [CrossRef]
- JSC Plant “Mars”. Metal-Glass Packages of Type 3301.8 (TO-18). Available online: https://z-mars.ru/produktsiya/korpusa-datchikov/korpusa-metallosteklyannye-33018-to-8.html (accessed on 3 December 2023).
- Elma-Pastes LLC. Conductive Au Pastes. Available online: https://elma-paste.ru/paste_au/ (accessed on 3 December 2023).
- GN Electronics. Ceramic Substrates Based on Aluminum Oxide (Al2O3). Available online: https://www.gnelectronics.ru/produktsiya/keramicheskie-podlozhki/keramicheskie-podlozhki-na-osnove-oksida-alyuminiya-al2o36027123/ (accessed on 3 December 2023).
- AVERON Scientific and Production Complex. Electric Vacuum Furnace for Pressing and Firing Ceramics. Available online: https://www.averon.ru/catalog/elektrovakuum__pechi/evp_press_2_0/ (accessed on 3 December 2023).
- Elma-Pastes LLC. Conductive Pt Pastes. Available online: https://elma-paste.ru/paste_pt/ (accessed on 3 December 2023).
- Dielectric Insulating Pastes. Available online: http://www.depa.ru/pd.htm (accessed on 3 December 2023).
- Rothman, A.J.; Bromley, L.A. High temperature thermal conductivity of gases. Ind. Eng. Chem. 1955, 47, 899–906. [Google Scholar] [CrossRef]
- Kyocera Corporation. Surface Mount Ceramic Packages for Electronic Devices. Available online: https://global.kyocera.com/prdct/semicon/semi/smd_pkg/ (accessed on 3 December 2023).
- Vibrantz Technologies. Electronic Materials. Available online: https://www.ferro.com/products/product-category/electronic-materials/htcc-system-materials/high-temperature-co-fired-ceramic-materials/htcc-nox-sensor-systems-and--materials (accessed on 3 December 2023).
- MTI Corporation. 1800C Compact Muffle Furnace. Available online: https://www.mtixtl.com/mufflefurnace-KSL-1800X-KA-S-UL.aspx (accessed on 3 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samotaev, N.; Podlepetsky, B.; Mashinin, M.; Ivanov, I.; Obraztsov, I.; Oblov, K.; Dzhumaev, P. Thermal Conductivity Gas Sensors for High-Temperature Applications. Micromachines 2024, 15, 138. https://doi.org/10.3390/mi15010138
Samotaev N, Podlepetsky B, Mashinin M, Ivanov I, Obraztsov I, Oblov K, Dzhumaev P. Thermal Conductivity Gas Sensors for High-Temperature Applications. Micromachines. 2024; 15(1):138. https://doi.org/10.3390/mi15010138
Chicago/Turabian StyleSamotaev, Nikolay, Boris Podlepetsky, Mikhail Mashinin, Igor Ivanov, Ivan Obraztsov, Konstantin Oblov, and Pavel Dzhumaev. 2024. "Thermal Conductivity Gas Sensors for High-Temperature Applications" Micromachines 15, no. 1: 138. https://doi.org/10.3390/mi15010138
APA StyleSamotaev, N., Podlepetsky, B., Mashinin, M., Ivanov, I., Obraztsov, I., Oblov, K., & Dzhumaev, P. (2024). Thermal Conductivity Gas Sensors for High-Temperature Applications. Micromachines, 15(1), 138. https://doi.org/10.3390/mi15010138