A Review on Micro-LED Display Integrating Metasurface Structures
Abstract
1. Introduction
2. Improvement in Light Extraction Efficiency
2.1. Improvement in the LEE by Metasurface Structures
2.2. Improvement in the LEE by Metasurface Structure in Organic LEDs (OLEDs) or Micro-OLEDs
3. Improvement in the Emitted Light Collimation
Research Objective | LED Type | Wavelength | Optimized Structure Model | Simulation or Experiment | Ref. |
---|---|---|---|---|---|
Improve LEE and enhance spectral narrowing | Micro-LED | 450~660 nm | Bottom NP GaN/undoped GaN DBR reflectors | Experiment | [38] |
Improve LEE and enhance spectral narrowing | Micro-LED | 440~460 nm | SiO2/TiO2 DBR reflectors F-P cavity | Simulation and experiment | [18] |
Improve LEE and reduce pixel size | OLED | 370~700 nm | Metasurface Ag and flat Ag mirrors F-P cavity | Simulation and experiment | [39] |
Enhance spectral narrowing to improve color purity | PeLED | 450~650 nm | Au mirror and DBR reflectors F-P cavity | Experiment | [40] |
4. Control of the Deflection of Light Angle
5. Control of Near-Eye Polarization
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.E.; Shin, J.H.; Park, J.H.; Hong, S.K.; Park, S.H.; Lee, S.H.; Lee, J.H.; Kang, S.S.; Lee, K.J. Micro Light-Emitting Diodes for Display and Flexible Biomedical Applications. Adv. Funct. Mater. 2019, 29, 1808075. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, X.; Cui, X.; Tian, P. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. J. Semicond. 2020, 41, 041606. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, C.; Hyun, B.; Sher, C.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.; Kuo, H.; et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Sher, C.; Lin, Y.; Lee, C.; Liang, S.; Lu, Y.; Chen, S.H.; Guo, W.; Kuo, H.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.; Deng, M.; Wu, S. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef]
- Anwar, A.R.; Sajjad, M.T.; Johar, M.A.; Hernández-Gutiérrez, C.A.; Usman, M.; Łepkowski, S.P. Recent Progress in Micro-LED-Based Display Technologies. Laser Photonics Rev. 2022, 16, 2100427. [Google Scholar] [CrossRef]
- Wong, M.S.; Nakamura, S.; DenBaars, S.P. Review-Progress in High Performance III-Nitride Micro-Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2019, 9, 015012. [Google Scholar] [CrossRef]
- Zhuang, Z.; Iida, D.; Ohkawa, K. InGaN-based red light-emitting diodes: From traditional to micro-LEDs. Jpn. J. Appl. Phys. 2021, 61, SA0809. [Google Scholar] [CrossRef]
- Chang, S.; Guo, X.; Ni, X. Optical metasurfaces: Progress and applications. Annu. Rev. Mater. Res. 2018, 48, 279–302. [Google Scholar] [CrossRef]
- Yang, J.; Gurung, S.; Bej, S.; Ni, P.; Lee, H.W.H. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101. [Google Scholar] [CrossRef]
- Du, K.; Barkaoui, H.; Zhang, X.; Jin, L.; Song, Q.; Xiao, S. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics 2022, 11, 1761–1781. [Google Scholar] [CrossRef]
- Su, V.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurface: Fabrication and applications. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef]
- Liu, Z.; Khaidarov, E.; Akimov, Y.; Paniagua-Domínguez, R.; Sun, S.; Bai, P.; Png, C.E.; Demir, H.V.; Kuznetsov, H.I. Using metasurfaces to control random light emission. In Proceedings of the 2018 Conference on Lasers and Electro-Optics Pacific Rim, Hong Kong, China, 29 July–3 August 2018. [Google Scholar]
- Parbrook, P.J.; Corbet, B.; Han, J.; Seong, T.; Amano, H. Micro-Light Emitting Diode: From Chips to Applications. Laser Photonics Rev. 2021, 15, 2000133. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Huang, J.; Wang, L. Circularly polarized light emission from a GaN micro-LED integrated with functional metasurfaces for 3D display. Opt. Lett. 2021, 46, 2666–2669. [Google Scholar] [CrossRef]
- Wang, M.; Xu, F.; Lin, Y.; Cao, B.; Chen, L.; Wang, C.; Wang, J.; Xu, K. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode. Nanoscale 2017, 9, 9104–9111. [Google Scholar] [CrossRef]
- Mao, P.; Liu, C.; Li, X.; Liu, M.; Chen, Q.; Han, M.; Maier, S.A.; Sargent, E.H.; Zhang, S. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light Sci. Appl. 2021, 10, 180. [Google Scholar] [CrossRef]
- Huang, J.; Tang, M.; Zhou, B.; Liu, Z.; Yi, X.; Wang, J.; Li, J.; Pan, A.; Wang, L. GaN-based resonant cavity micro-LEDs for AR application. Appl. Phys. Lett. 2022, 121, 201104. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Gao, X.; Xu, Y.; Wang, L. Unidirectional-emitting GaN-based micro-LED for 3D display. Opt. Lett. 2021, 6, 3476–3479. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
- Lee, T.; Chen, L.; Lo, Y.; Swayamprabha, S.S.; Kumar, A.; Huang, Y.; Chen, S.; Zan, H.; Chen, F.; Horng, R.; et al. Technology and applications of micro-LEDs: Their characteristics, fabrication, advancement, and challenges. ACS Photonics 2022, 9, 2905–2930. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Sun, J.; Guo, T.; Chen, E.; Zhou, X.; Zhang, Y.; Yan, Q. Role of surface microstructure and shape on light extraction efficiency enhancement of GaN micro-LEDs: A numerical simulation study. Displays 2022, 73, 102172. [Google Scholar] [CrossRef]
- Ci, Q.; Ren, X.; Yan, Y.; Ren, H.; Niu, K.; Sun, G.; Huang, Z.; Wu, X. The Influence of the Emission Source on Outcoupling and Directivity of Patterned Perovskite Light-Emitting Diode. IEEE Photonics J. 2021, 13, 8200405. [Google Scholar] [CrossRef]
- Zhou, L.; Ou, Q.; Shen, S.; Zhou, Y.; Fan, Y.; Zhang, J.; Tang, J. Tailoring directive gain for high-contrast, wide-viewing-angle organic light-emitting diodes using speckle image holography metasurfaces. ACS Appl. Mater. Interfaces 2016, 8, 22402–22409. [Google Scholar] [CrossRef] [PubMed]
- Xu, X. Fabrication and Integration of Metasurfaces and Metagratings into Organic Photodetectors and Light Emitters. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2019. [Google Scholar]
- Xu, X.; Kwon, H.; Finch, S.; Lee, J.Y.; Nordin, L.; Wasserman, D.; Alù, A.; Dodabalapur, A. Reflecting metagrating-enhanced thin-film organic light emitting devices. Appl. Phys. Lett. 2021, 118, 053302. [Google Scholar] [CrossRef]
- Kang, K.; Im, S.; Lee, C.; Kim, J.; Kim, D. Nanoslot metasurface design and characterization for enhanced organic light-emitting diodes. Sci. Rep. 2021, 11, 9232. [Google Scholar] [CrossRef]
- Lin, J.G.; Sun, Q.; Feng, W.B.; Guo, S.M.; Liu, Z.h.; Liang, H.W.; Li, J.T. Enhancing the Light Extraction Efficiency in Micro-Organic Light-Emitting Diodes with Metalens. Adv. Photonics Res. 2021, 2, 2000145. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.; Ou, Q.; Zhu, Y.; Lin, Y.; Fan, Y.; Wei, H. Speckle image holography modulated full-color organic light-emitting diodes with high efficiency and engineered emission profile. Org. Electron. 2017, 42, 13–20. [Google Scholar] [CrossRef]
- Yue, Q.Y.; Li, K.; Kong, F.; Zhao, J.; Liu, M. Analysis on the effect of amorphous photonic crystals on light extraction efficiency enhancement for GaN-based thin-film-flip-chip light-emitting diodes. Opt. Commun. 2016, 367, 72–79. [Google Scholar] [CrossRef]
- Zhou, L.M.; Ren, B.C.; Zheng, Z.W.; Ying, L.Y.; Long, H.; Zhang, B.P. Fabrication and Characterization of GaN-Based Resonant-Cavity Light-Emitting Diodes with Dielectric and Metal Mirrors. ECS. J. Solid State Sci. Technol. 2018, 7, 34–37. [Google Scholar] [CrossRef]
- Moreno, E.; Garcia-Vidal, F.J.; Martin-Moreno, L. Enhanced transmission and beaming of light via photonic crystal surface modes. Phys. Rev. B 2004, 69, 121402. [Google Scholar] [CrossRef]
- DiMaria, J.; Dimakis, E.; Moustakas, T.D.; Paiella, R. Plasmonic Collimation and Beaming from LED Active Materials. In Proceedings of the CLEO, San Jose, CA, USA, 9–14 June 2013. [Google Scholar]
- Joo, J.Y.; Lee, S.K. Miniaturized TIR Fresnel Lens for Miniature Optical LED Applications. Int. J. Precis. Eng. Manuf. 2009, 10, 137–140. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, T.Y.; Huang, K.L.; Liu, T.S.; Tsai, M.D.; Lin, C.T. Freeform lens design for LED collimating illumination. Opt. Express 2012, 20, 10984–10995. [Google Scholar] [CrossRef]
- Chung, K.N.; Sui, J.Y.; Sui, J.Y.; Demory, B.; Teng, C.H.; Ku, P.C. Monolithic integration of individually addressable light-emitting diode color pixels. Appl. Phys. Lett. 2017, 110, 111103. [Google Scholar] [CrossRef]
- Delbeke, D.; Bockstaele, R.; Bienstman, P.; Baets, R.; Benisty, H. High-Efficiency Semiconductor Resonant-Cavity Light-Emitting Diodes: A Review. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 189–206. [Google Scholar] [CrossRef]
- Bai, J.; Cai, Y.; Feng, P.; Fletcher, P.; Zhu, C.; Tian, Y.; Wang, T. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano 2020, 14, 6906–6911. [Google Scholar] [CrossRef]
- Joo, W.; Kyoung, J.; Esfandyarpour, M.; Lee, S.; Koo, H.; Song, S.; Kwon, Y.; Song, S.H.; Bae, J.C.; Jo, A.; et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 2020, 370, 459–463. [Google Scholar] [CrossRef]
- Liang, J.; Du, Y.; Wang, K.; Ren, A.; Dong, X.; Zhang, C.; Tang, J.; Yan, Y.; Zhao, Y.S. Ultrahigh Color Rendering in RGB Perovskite Micro-Light-Emitting Diode Arrays with Resonance-Enhanced Photon Recycling for Next Generation Displays. Adv. Opt. Mater. 2022, 10, 2101642. [Google Scholar] [CrossRef]
- Khaidarov, E.; Liu, Z.; Paniagua-Domínguez, R.; Ha, S.T.; Valuckas, V.; Liang, X.; Akimov, Y.; Bai, P.; Png, C.E.; Demir, H.V.; et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 2020, 14, 1900235. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, J.; Hu, Z.; Gao, X.; Wang, L. Pixel crosstalk in naked-eye micro-LED 3D display. Appl. Opt. 2021, 60, 5977–5983. [Google Scholar] [CrossRef]
- Park, Y.; Kim, H.; Lee, J.; Ko, W.; Bae, K.; Cho, K. Direction control of colloidal quantum dot emission using dielectric metasurfaces. Nanophotonics 2020, 9, 1023–1030. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, S.; Sun, W. Beam manipulation for quantum dot light-emitting diode with an Ag grating and a phase-gradient metasurface. Opt. Express 2022, 30, 28345–28357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, C.; Bing, C.; Huang, Z.; Wang, J.; Zhang, B.; Xu, K. Polarized GaN-based LED with an integrated multi-layer subwavelength structure. Opt. Express 2010, 18, 7019–7030. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Meyaard, D.S.; Shan, Q.; Cho, J.; Schubert, E.F.; Kim, G.B.; Sone, C. Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers. Appl. Phys. Lett. 2012, 101, 061103. [Google Scholar] [CrossRef]
- Huang, J.P.; Xu, Y.; Zhou, B.R.; Zhan, H.M.; Cao, P.; Wang, J.X.; Li, J.M.; Yi, X.Y.; Pan, A.L.; Wang, L.C. Linearly polarized light emission from GaN micro-LEDs for 3D display. Appl. Phys. Lett. 2023, 122, 111107. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Ren, F.; Li, Y.; Liu, B.; Ye, J.; Ge, H.; Xie, Z.; Zhang, R.; Tan, H.H.; et al. High-brightness polarized green InGaN/GaN light-emitting diode structure with Al-coated p-GaN grating. ACS Photonics 2016, 3, 1912–1918. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Fan, B.; Nan, F.; Zhou, G.; Fan, Y.; Zhang, W.; Ou, Q. Tailored Polarization Conversion and Light-Energy Recycling for Highly Linearly Polarized White Organic Light-Emitting Diodes. Laser Photonics Rev. 2020, 14, 1900341. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Li, T.; Huang, S.; Huang, H.; Wen, S. Stretchable and foldable waveplate based on liquid crystal polymer. Appl. Phys. Lett. 2020, 117, 263301. [Google Scholar] [CrossRef]
- Jia, J.; Cao, X.; Ma, X.; De, J.; Yao, J.; Schumacher, S.; Liao, Q.; Fu, H. Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions. Nat. Commun. 2023, 14, 31. [Google Scholar] [CrossRef]
Research Objective | LED Type | Wavelength | Optimized Structure Model | Simulation or Experiment | Ref. |
---|---|---|---|---|---|
Improve LEE | LED | 440~470 nm | Disordered Ag nanoparticles | Simulation and experiment | [17] |
Improve LEE | PeLED | 780 nm | Nanobricks in the electron transport layer | Simulation | [23] |
Improve LEE | OLED | 440~570 nm | Speckle image holography metasurfaces | Simulation and experiment | [24] |
Improve LEE | OLED | 470~630 nm | Reflected supergrating | Simulation and experiment | [25,26] |
Improve LEE | OLED | 450~650 nm | Bottom nanoslot metasurface | Simulation and experiment | [27] |
Improve LEE | Micro-OLED | 640 nm | Metalens embedding the glass substrate | Simulation | [28] |
Study the influence of wavelength and material on the SIH metasurface to improve LEE | OLED | 440~670 nm | SIH metasurfaces | Simulation and experiment | [29] |
Research Objective | LED Type | Wavelength | Optimized Structure Model | Simulation or Experiment | Ref. |
---|---|---|---|---|---|
Achieve light directional emission at the expected angle | LED | 460 nm | Top TiO2 nanocolumns, DBR reflectors, and Al mirror cavity | Simulation | [13] |
Achieve light directional emission at the expected angle | GaP LED | 615~640 nm | Top Si nanocolumns, DBR reflectors, and Au mirror cavity | Simulation and experiment | [41] |
Achieve light directional emission at the expected angle | CQD LED | 580~620 nm | Top TiO2 nanocolumns and DBR reflectors cavity | Simulation and experiment | [43] |
Achieve light directional emission at the expected angle | QD LED | 520 nm | Top TiO2 nanocolumns and bottom circular patterned Ag grating | Simulation | [44] |
Realize Micro-LED unidirectional emission | Micro-LED | 445 nm | Top TiO2 nanocolumns, DBR reflectors, and Al mirror cavity | Simulation | [19] |
Reduce pixel crosstalk by unidirectional emission Micro-LED | Micro-LED | 460 nm | Top TiO2 nanocolumns, DBR reflectors, and Al mirror cavity | Simulation | [42] |
Research Objective | LED Type | Wavelength | ER or Polarization Degree | Optimized Structure Model | Simulation or Experiment | Ref. |
---|---|---|---|---|---|---|
Improve extinction ratio of LP light | LED | 470 nm | 60 dB | Dielectric transition grating | Simulation | [45] |
Improve polarization degree of LP light | LED | 445~470 nm | 0.96 | Wire-grid polarizer on sapphire | Simulation and experiment | [46] |
Improve extinction ratio of LP light | Micro-LED | 400~480 nm | 14.17 dB | Subwavelength metal grating | Simulation and experiment | [47] |
Improve polarization luminous efficiency and polarization degree of LP light | LED | 500~540 nm | 0.54 | P-GaN and Al grating | Simulation and experiment | [48] |
Improve polarization luminous efficiency and extinction ratio of LP light | LED | 500~560 nm | 20 dB | Top dielectric/metal grating and bottom elliptical metal nanocolumns | Simulation and experiment | [16] |
Improve polarization luminous efficiency and extinction ratio of LP light | OLED | 450~650 nm | 17.8 dB | Top dielectric/metal grating and bottom holographic metasurface | Simulation and experiment | [49] |
Obtain CP light | Micro-LED | 450 nm | 38 dB | Top TiO2 nanobricks and bottom Al grating | Simulation | [15] |
Improve the luminous efficiency of CP light | OLED | 450~700 nm | / | Waveplates based on de-ionized water immersion transfer method | Experiment | [50] |
Improve the luminous efficiency of CP light | OLED | 450~550 nm | / | Embedding a thin two-dimensional organic single crystal | Simulation and experiment | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Ren, K.; Dai, G.; Zhang, J. A Review on Micro-LED Display Integrating Metasurface Structures. Micromachines 2023, 14, 1354. https://doi.org/10.3390/mi14071354
Liu Z, Ren K, Dai G, Zhang J. A Review on Micro-LED Display Integrating Metasurface Structures. Micromachines. 2023; 14(7):1354. https://doi.org/10.3390/mi14071354
Chicago/Turabian StyleLiu, Zhaoyong, Kailin Ren, Gaoyu Dai, and Jianhua Zhang. 2023. "A Review on Micro-LED Display Integrating Metasurface Structures" Micromachines 14, no. 7: 1354. https://doi.org/10.3390/mi14071354
APA StyleLiu, Z., Ren, K., Dai, G., & Zhang, J. (2023). A Review on Micro-LED Display Integrating Metasurface Structures. Micromachines, 14(7), 1354. https://doi.org/10.3390/mi14071354