AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers
Abstract
1. Introduction
2. Fabrication and Structure of Device
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsai, J.H.; Chiang, C.C.; Wang, F.M. High-Performance AlGaN/AlN/GaN High Electron Mobility Transistor with Broad Gate-to-Source Operation Voltages. Phys. Status Solidi C 2015, 12, 596–599. [Google Scholar] [CrossRef]
- Wang, T.B.; Hsu, W.C.; Su, J.L.; Hsu, R.T.; Wu, Y.H.; Lin, Y.S.; Su, K.H. Comparison of Al0.32Ga0.68N/GaN Heterostructure Field-Effect Transistors with Different Channel Thicknesses. J. Electrochem. Soc. 2007, 154, H131–H133. [Google Scholar] [CrossRef]
- Lin, Y.S.; Goa, W.H. High-Temperature Stability of Improved AlGaN/AlN/GaN HEMT with Pre-Gate Metal Treatment. IEICE Electron. Express 2019, 16, 20181046. [Google Scholar] [CrossRef][Green Version]
- Lin, Y.S.; Lin, S.F. Large-signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors. Micromachines 2021, 12, 7. [Google Scholar] [CrossRef]
- Long, R.D.; McIntyre, P.C. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices. Materials 2012, 5, 1297–1335. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Ibbetson, J.P.; Fini, P.T.; Ness, K.D.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization Effects, Surface States, and the Source of Electrons in AlGaNÕGaN Heterostructure Field Effect Transistors. Appl. Phys. Lett. 2000, 77, 250–252. [Google Scholar] [CrossRef]
- Hahn, H.; Alam, A.; Heuken, M.; Kalisch, H.; Vescan, A. Investigation of Plasma-Oxidized Aluminium as a Gate Dielectric for AlGaN/GaN MISHFETs. Semicond. Sci. Technol. 2012, 27, 062001. [Google Scholar] [CrossRef]
- Taking, S.; MacFarlane, D.; Wasige, E. AlN/GaN MOSHEMTs with Thermally Grown Al2O3 Passivation. IEEE Trans. Electron Devices 2011, 58, 1418–1424. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, B.; Jin, Y.; Huang, S.; Wei, K.; Liu, X.; Bao, X.; Mou, J.; Zhang, B. High-Performance Enhancement-Mode Al2O3/AlGaN/GaN-on-Si MISFETs with 626 MW/cm2 Figure of Merit. IEEE Trans. Electron Devices 2015, 62, 776–781. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, Q.; Liu, X.; Wang, H. Breakdown Enhancement and Current Collapse Suppression in AlGaN/GaN HEMT by NiOX/SiNX and Al2O3/SiNX as Gate Dielectric Layer and Passivation Layer. IEEE Electron Device Lett. 2019, 40, 1921–1924. [Google Scholar] [CrossRef]
- Kanaga, S.; Dutta, G.; Kushwah, B.; DasGupta, N.; DasGupta, A. Low Temperature and High Pressure Oxidized Al2O3 as Gate Dielectric for AlInN/GaN MIS-HEMTs. IEEE Trans. Device Mater. Reliab. 2020, 60, 613–621. [Google Scholar] [CrossRef]
- Lin, Y.S.; Wang, H.W. AlGaN/GaN Metal-Oxide-Semiconductor High-Electron Mobility Transistor with Annealed Al2O3 Gate Dielectric. Sci. Adv. Mater. 2022, 14, 1419–1422. [Google Scholar] [CrossRef]
- Blaho, M.; Gregušová, D.; Jurkovič, M.; Haščík, Š.; Fedor, J.; Kordoš, P.; Fröhlich, K.; Brunner, F.; Cho, M.; Hilt, O.; et al. Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOS HEMTs. Microelectron. Eng. 2013, 112, 204–207. [Google Scholar] [CrossRef]
- Rawat, A.; Meer, M.; Surana, V.K.; Bhardwaj, N.; Pendem, V.; Garigapati, N.S.; Yadav, Y.; Ganguly, S.; Saha, D. Thermally Grown TiO2 and Al2O3 for GaN-Based MOS-HEMTs. IEEE Trans. Electron Devices 2018, 65, 3725–3731. [Google Scholar] [CrossRef]
- Campbell, S.A.; Gilmer, D.C.; Wang, X.C.; Hsieh, M.T.; Kim, H.S.; Gladfelter, W.L.; Yan, J. MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectrics. IEEE Trans. Electron. Devices 1997, 44, 104–109. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lu, C.C. Improved AlGaN/GaN Metal-Oxide-Semiconductor High-Electron Mobility Transistors with TiO2 Gate Dielectric Annealed in Nitrogen. IEEE Trans. Electron Devices 2018, 65, 783–787. [Google Scholar] [CrossRef]
- Rawat, A.; Surana, V.K.; Meer, M.; Bhardwaj, N.; Ganguly, S.; Saha, D. Gate Current Reduction and Improved DC/RF Characteristics in GaN-Based MOS-HEMTs Using Thermally Grown TiO2 as a Dielectric. IEEE Trans. Electron Devices 2019, 66, 2557–2562. [Google Scholar] [CrossRef]
- Anderson, T.J.; Wheeler, V.D.; Shahin, D.I.; Tadjer, M.J.; Koehler, A.D.; Hobart, K.D.; Christou, A.; Kub, F.J.; Eddy, C.R., Jr. Enhancement Mode AlGaN/GaN MOS High-Electron-Mobility Transistors with ZrO2 Gate Dielectric Deposited by Atomic Layer Deposition. Appl. Phys. Express 2016, 9, 071003. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, C.W.; Lau, K.M. Enhancement-Mode GaN MOS-HEMTs With Recess-Free Barrier Engineering and High-k ZrO2 Gate Dielectric. IEEE Electron Device Lett. 2018, 39, 405–408. [Google Scholar] [CrossRef]
- Meng, X.; Lee, J.; Ravichandran, A.; Byun, Y.C.; Lee, J.G.; Lucero, A.T.; Kim, S.J.; Ha, M.W.; Young, C.D.; Kim, J. Robust SiNx/GaN MISHEMTs with Crystalline Interfacial Layer Using Hollow Cathode PEALD. IEEE Electron Device Lett. 2018, 39, 1195–1198. [Google Scholar] [CrossRef]
- Lachab, M.; Sultana, M.; Fatima, H.; Adivarahan, V.; Fareed, Q.; Khan, M.A. Direct Current Performance and Current Collapse in AlGaN/GaN Insulated Gate High-Electron Mobility Transistors on Si (1 1 1) Substrate with Very thin SiO2 Gate Dielectric. Semicond. Sci. Technol. 2012, 27, 125001. [Google Scholar] [CrossRef]
- Husna, F.; Lachab, M.; Sultana, M.; Adivarahan, V.; Fareed, Q.; Khan, A. High-Temperature Performance of AlGaN/GaN MOSHEMT With SiO2 Gate Insulator Fabricated on Si (111) Substrate. IEEE Trans. Electron Devices. 2012, 59, 2424–2429. [Google Scholar] [CrossRef]
- Cho, G.; Cha, H.Y.; Kim, H. Influence of Oxygen–Plasma Treatment on In-Situ SiN/AlGaN/GaN MOSHEMT with PECVD SiO2 Gate Insulator. Materials 2019, 12, 3968. [Google Scholar] [CrossRef][Green Version]
- Lin, Y.S.; Huang, J.J. Linearity Enhancement and Noise Reduction in a Passivated AlGaAs/InGaAs/GaAs High-Electron Mobility Transistor. J. Korean Phys. Soc. 2021, 79, 828–831. [Google Scholar] [CrossRef]
- McCa†erty, E.; Wightman, J.P. Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method. Surf. Interface Anal. 1998, 26, 549–564. [Google Scholar] [CrossRef]
- Alam, M.J.; Cameron, D.C. Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method. J. Solgel Sci. Technol. 2002, 25, 137–145. [Google Scholar] [CrossRef]
- Wang, S.; Lian, J.S.; Zheng, W.T.; Jiang, Q. Photocatalytic Property of Fe Doped Anatase and Rutile TiO2 Nanocrystal Particles Prepared by Sol–Gel Technique. Appl. Surf. Sci. 2012, 263, 260–265. [Google Scholar] [CrossRef]
- Zhang, J.M.; Ruf, T.; Cardona, M.; Ambacher, O.; Stutzmann, M.; Wagner, J.-M.; Bechstedt, F. Raman Spectra of Isotopic GaN. Phys. Rev. B 1997, 56, 14399–14406. [Google Scholar] [CrossRef]
- Krishna, T.C.S.; Aggarwal, N.; Reddy, G.A.; Dugar, P.; Mishra, M.; Goswami, L.; Dilawar, N.; Kumar, M.; Mauryac, K.K.; Gupta, G. Probing the Correlation Between Structure, Carrier Dynamics and Defect States of Epitaxial GaN Film on (110)Sapphire Grown by Rf-Molecular Beam Epitaxy. RSC Adv. 2015, 5, 73261–73267. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N.G. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Hsu, L.S.; Rujkorakarn, R.; Sites, J.R.; She, C.Y. Thermally Induced Crystallization of Amorphous-Titania Films. J. Appl. Phys. 1986, 59, 3475–3480. [Google Scholar] [CrossRef]
- Brange, K.; Ottermann, C.R.; Anderson, O.; Jeschkowski, U.; Laube, M.; Feile, R. Investigation of TiO2 Films Deposited by Different Techniques. Thin Solid Films 1991, 197, 279–285. [Google Scholar] [CrossRef]
- Turuvekere, S.; Karumuri, N.; Rahman, A.A.; Bhattacharya, A.; DasGupta, A.; DasGupta, N. Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling. IEEE Trans. Electron Devices 2013, 60, 3157–3165. [Google Scholar] [CrossRef]
- Sze, S.M. High-Speed Semiconductor Devices; Wiley: New York, NY, USA, 1990; Chapter 4. [Google Scholar]
POUT (dBm) | Gain (dB) | PAE (%) | |
---|---|---|---|
HEMT | 21.89 | 14.34 | 14.5 |
Unannealed MOS-HEMT | 23.51 | 15.82 | 28.88 |
MOS-HEMT (N2 annealing at 300 °C) | 24.92 | 19.65 | 34.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-S.; Lu, C.-C. AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers. Micromachines 2023, 14, 1183. https://doi.org/10.3390/mi14061183
Lin Y-S, Lu C-C. AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers. Micromachines. 2023; 14(6):1183. https://doi.org/10.3390/mi14061183
Chicago/Turabian StyleLin, Yu-Shyan, and Chi-Che Lu. 2023. "AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers" Micromachines 14, no. 6: 1183. https://doi.org/10.3390/mi14061183
APA StyleLin, Y.-S., & Lu, C.-C. (2023). AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers. Micromachines, 14(6), 1183. https://doi.org/10.3390/mi14061183