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Abstract: This paper reports on improved AlGaN/GaN metal oxide semiconductor high-electron
mobility transistors (MOS-HEMTs). TiO2 is used to form the dielectric and passivation layers. The
TiO2 film is characterized using X-ray photoemission spectroscopy (XPS), Raman spectroscopy, and
transmission electron microscopy (TEM). The quality of the gate oxide is improved by annealing at
300 ◦C in N2. Experimental results indicate that the annealed MOS structure effectively reduces the
gate leakage current. The high performance of the annealed MOS-HEMTs and their stable operation
at elevated temperatures up to 450 K is demonstrated. Furthermore, annealing improves their output
power characteristics.

Keywords: MOS-HEMT; AlGaN; GaN; silicon substrate; TiO2; passivation; dielectric; MOCVD;
anneal

1. Introduction

High-electron mobility transistors (HEMTs) have been intensively investigated over a
long period. GaN has the favorable properties of a big bandgap, an enhanced breakdown
electric field, and high thermal conductivity. AlGaN/GaN is a key material system in
fifth generation (5G) applications in the field of microwave communication [1–4]. An
AlGaN/GaN heterostructure generates a high two-dimensional electron gas (2-DEG) by
spontaneous and piezoelectric polarization effects [5,6].

Ibbetson et al. presented a surface donor model to explain the origin of 2-DEG in
an AlGaN/GaN heterojunction [7]. Generally, 2-DEG electrons are formed when the
thickness of the AlGaN layer is larger than the critical value. Polarization phenomena in the
AlGaN/GaN structures generate surface states. The donor-like states (positively charged
surfaces) can trap the negative charges and thereby generate a virtual gate, which reduces
the 2-DEG concentration [5,6]. Moderate surface passivation can prevent the appearance of
the virtual gate. Another issue associated with the AlGaN/GaN HEMT is the high leakage
currents through the Schottky gate. Inserting a gate dielectric can significantly reduce the
gate’s leakage. The use of many insulators with a high dielectric constant to reduce the
leakage current and prevent the significantly negative shift of the threshold voltage has
been investigated. Particular insulators have been intensively examined. They include the
insulating dielectric materials AlOX [8], Al2O3 [9–15], TiO2 [15–18], ZrO2 [19,20], SiNX [21],
and SiO2 [22–24]. TiO2 has high dielectric constants, making TiO2 an excellent insulating
material for use in MOS devices. Little has been published on GaN-based MOS-HEMTs
with a TiO2 insulating layer, about which much remains unknown.

The effects of high temperature and surface passivation on GaAs-based HEMTs have
been extensively examined [25]. However, few studies of the potential of AlGaN/GaN
metal oxide semiconductor high-electron mobility transistors (MOS-HEMTs) for high-
temperature operation have been undertaken. In our previous report, the threshold

Micromachines 2023, 14, 1183. https://doi.org/10.3390/mi14061183 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14061183
https://doi.org/10.3390/mi14061183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi14061183
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14061183?type=check_update&version=2


Micromachines 2023, 14, 1183 2 of 9

voltage (Vth), interface traps (Dit), unity current gain cutoff frequency (fT), maximum
frequency of oscillation (f max), and minimum noise figure (NFmin) of the TiO2 AlGaN/GaN
MOS-HEMTs were examined [17]. However, analyses of their constituent materials, their
high-temperature output characteristics, and their power characteristics have not been
discussed. Furthermore, to the best of our knowledge, no research has been performed on
the power characteristics of TiO2 AlGaN/GaN MOS-HEMTs and their performance at high
temperatures, which are worthy of investigation.

In this study, a material analysis of TiO2 is first conducted. X-ray photoemission
spectroscopy (XPS) and Raman spectroscopy are used to characterize TiO2 films. Exper-
imental results demonstrate that annealing improves the performance of MOS-HEMTs.
The current–voltage characteristics of the MOS-HEMTs that are operated up to 450 K are
measured.

2. Fabrication and Structure of Device

The epilayers of transistors were grown via low-pressure metal organic chemical vapor
deposition (LP-MOCVD) on a silicon substrate. A typical AlGaN/GaN HEMT epitaxial
structure that comprised of an undoped buffer layer, an undoped GaN layer (1.2 mm), an
undoped Al0.26Ga0.74N top barrier layer (30 nm), and an undoped GaN cap layer (2 nm),
was grown.

In order to generate the designed patterns, standard photolithography and lift-off
techniques were used. First, the areas of mesa isolation were defined by inductively coupled
plasma reactive ion etching (ICP-RIE), which is a means of dry etching. The purpose of
mesa isolation is to reduce the leakage currents. Thermally evaporated Ni was used as the
mesa etching mask. After the etching step, the Ni hard mask was removed completely using
HNO3. Then, the source and drain contacts were formed by a Ti (10 nm)/Al (100 nm)/Au
(50 nm) ohmic metal alloy. Finally, a Ni/Au (100/50 nm) gate metal stack was deposited
without a recess or any extra dielectrics for the HEMT device. In this experiment, the device
was spin-coated with positive photoresist (FH6400L) using a spinner. Ni has a high work
function and so heightened the Schottky barrier. Au was used to prevent the oxidation of
Ni.

A TiO2 layer was deposited in the access region of the MOS-HEMT after the source and
drain ohmic contacts had completely formed. TiO2 was deposited using an RF sputtering
system. The TiO2 target was prepared from 99.99% TiO2 powder. The substrate temperature
was 25 ◦C. The reactive gas was a mixture of Ar and O2 with fixed flow rates of 20 sccm and
5 sccm, respectively. Etchant (NH4OH/H2O2/H2O = 1:2:1) was used to remove TiO2 from
the source and drain region. In order to improve the quality of the TiO2 layer and reduce
the oxide trap, the as-deposited TiO2 was put into a rapid thermal annealing (RTA) system.
The gate length and width were 1 µm and 100 µm, respectively. Figure 1 schematically
depicts the TiO2 AlGaN/GaN MOS-HEMT.
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Figure 1. Schematic structure of TiO2 MOS-HEMT.
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3. Results

Hall data were measured for the studied HEMT without passivation [17]. Experimen-
tal results demonstrate that unannealed TiO2 passivation increases the 2-DEG concentration
and reduces electron mobility. The increase in the 2-DEG concentration is caused by the
trapping of positive charges at the surface, neutralizing the polarization charge [5,6]. The
electron mobility of the device with the annealed TiO2 passivation is higher than that
achieved using unannealed TiO2 passivation. Annealing increases electron mobility by
reducing the traps.

Figure 2a,b present typical XPS survey and high-resolution spectra of the as-deposited
TiO2 films, respectively. Special attention should be paid to photoelectrons with binding
energies between 454 eV and 470 eV. Figure 2b shows Ti 2p XPS data. The Ti 2p2/3 and
Ti 2p1/2 spin-orbital splitting photoelectrons are located at around 458.5 eV and 464.2 eV,
respectively, consistent with the values that are reported for TiO2 films [26–28].
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Figure 2. (a) XPS survey and (b) high-resolution XPS spectra of the as-deposited TiO2 films. 
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Figure 2. (a) XPS survey and (b) high-resolution XPS spectra of the as-deposited TiO2 films.

Raman spectroscopy is a powerful diagnostic tool in the study of TiO2. Raman
spectroscopy measurements are made. A TiO2 film is grown on GaN. The laser output
power is set to 7.23 mW with an excitation wavelength of 532 nm. Figure 3a presents
the Raman spectra of the as-deposited TiO2 taken at room temperature. Peaks that are
associated with the GaN film are observed [29,30]. Figure 3b,c show the TiO2 films that
are annealed at 300 ◦C and 600 ◦C, respectively. In general, crystalline TiO2 can exist in
three phases, which are anatase, rutile, and brookite. Visible peaks due to the crystalline
TiO2 phase are not obtained experimentally from the as-deposited TiO2 [Figure 3a] or
300 ◦C-annealed TiO2 [Figure 3b]. The 600 ◦C-annealed TiO2 yields two additional peaks
[Figure 3c]. The emission bands at 447 and 610 cm−1 are identified as Eg and A1g of the
rutile structure, respectively [31–33]. Raman analysis shows that TiO2 remains amorphous
when it is annealed at 300 ◦C but it adopts the rutile crystal structure when it is annealed
at 600 ◦C. These Raman spectroscopic results are consistent with our previously reported
X-ray diffraction (XRD) analysis [17].

Transmission electron microscopy (TEM) samples are prepared using the focused ion
beam (FIB) lift-out technique. Figure 4a,b display cross-sectional transmission electron
micrographs of the TiO2/GaN/AlGaN heterostructure without and following annealing at
300 ◦C in an N2 ambient, respectively. The thickness of the 300 ◦C N2-annealed TiO2 film is
about 14.7 nm. The thickness of the as-deposited TiO2 film is about 16.0 nm.

Gate oxide quality is evaluated using capacitance–voltage (C–V) measurements. The
radius of the Schottky or MOS contact is 50.5 µm. Figure 5a,b are hysteresis plots of C–V
data for the MOS capacitors without and following 300 ◦C annealing at 1 MHz, respectively.
The C–V data are obtained by sweeping the gate voltage from zero to a negative value
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and back to zero. The 300 ◦C N2-annealed TiO2 MOS diode exhibits less hysteresis and
a sharper transition from accumulation to depletion (or depletion to accumulation) than
the unannealed MOS diode. Therefore, 300 ◦C N2 annealing improves the quality of the
MOS diode [8,14,19,22,23]. From the zero-bias capacitance, the dielectric constant of the
annealed TiO2 is calculated to be around 28.
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Figure 3. Raman spectra of (a) as-deposited, (b) 300 °C-annealed, and (c) 600 °C-annealed TiO2 on 
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Figure 3. Raman spectra of (a) as-deposited, (b) 300 ◦C-annealed, and (c) 600 ◦C-annealed TiO2 on
GaN.
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Figure 5. Capacitance–voltage hysteresis plots of (a) as-deposited and (b) 300 ◦C N2-annealed TiO2

MOS capacitors.

Figure 6 plots the two-terminal gate-to-drain characteristics of the studied devices with
a floating source that is operated at various temperatures. Figure 6b,c plot the results for
the MOS-HEMT (without annealing) and MOS-HEMT (following N2 annealing at 300 ◦C),
respectively. The breakdown voltage decreases as the temperature increases. Furthermore,
the leakage current increases with temperatures. The 300 ◦C N2-annealed MOS-HEMT has
a smaller leakage current than the unannealed MOS-HEMT under the same ambient condi-
tion because annealing reduces trap-assisted tunneling and Frenkel–Poole emission [34].
Experimental results clearly demonstrate the potential of our 300 ◦C N2-annealed MOS-
HEMTs for high-temperature use.
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Figure 6. Two-terminal gate–drain breakdown plots for (a) HEMT, (b) unannealed MOS-HEMT, 

and (c) annealed MOS-HEMT at various temperatures. 

Figure 7 plots the IDS–VDS characteristics of the 300 °C N2-annealed MOS-HEMT. The 

data are measured at 300 K and 450 K. The gate voltage is swept from VGS = +2 V to −6 V 

in −1 V steps. The drain current decreases as the temperature increases. Figure 8 plots the 

transfer characteristics and extrinsic transconductance of the 300 °C N2-annealed MOS-

HEMT over a wide range of temperatures. The maximum extrinsic transconductane de-

clines as the temperature increases. MOS-HEMTs operate stably at elevated temperatures 

up to 450 K with excellent pinch-off characteristics. 

Figure 6. Two-terminal gate–drain breakdown plots for (a) HEMT, (b) unannealed MOS-HEMT, and
(c) annealed MOS-HEMT at various temperatures.
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Figure 7 plots the IDS–VDS characteristics of the 300 ◦C N2-annealed MOS-HEMT.
The data are measured at 300 K and 450 K. The gate voltage is swept from VGS = +2 V to
−6 V in −1 V steps. The drain current decreases as the temperature increases. Figure 8
plots the transfer characteristics and extrinsic transconductance of the 300 ◦C N2-annealed
MOS-HEMT over a wide range of temperatures. The maximum extrinsic transconductane
declines as the temperature increases. MOS-HEMTs operate stably at elevated temperatures
up to 450 K with excellent pinch-off characteristics.
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Figure 8. Drain current and extrinsic transconductance vs. gate-to-source voltage for studied devices
at various temperatures.

Figure 9 plots the measured CW power performance of the devices herein. Due to its
lower gate leakage current, the maximum drain voltage of the MOS-HEMT could be higher
than that of the HEMT, further favoring a high maximum rf power. The maximum output
power (Pout) and power-added efficiency (PAE) in Class A operation are given by [35].

Pout =
1
8

IDS,max(VB − VDsat) (1)

PAE (in percentage) =
Pout(r f )− Pin(r f )

Pin(dc)
× 100% (2)
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where IDS,max is the maximum drain current, VB is the breakdown voltage, Pin (dc) is the
dc power dissipation, Pin (rf ) is the input power, and Pout (rf ) is the output power. Table 1
compares the large-signal performances of the studied devices. The 300 ◦C N2-annealed
MOS-HEMT exhibits the best power characteristics owing to the improved IDS,max, reduced
leakage current, and improved breakdown voltage.
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Table 1. Comparison of 2.4 GHz large-signal performances of studied devices. 

 POUT (dBm) Gain (dB) PAE (%) 

HEMT 21.89 14.34 14.5 

Unannealed MOS-HEMT 23.51 15.82 28.88 

MOS-HEMT (N2 annealing at 300 °C) 24.92 19.65 34.08 

4. Conclusions 

AlGaN/GaN MOS-HEMTs with TiO2 as the insulating layer are investigated. The ef-

fects of annealing treatment on the crystal structure of TiO2 are examined. The annealed 

TiO2/AlGaN/GaN MOS-HEMT exhibits the smallest leakage current and largest output 

power characteristics of the studied devices, and has great promise for 5G applications. 
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HEMT 21.89 14.34 14.5
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MOS-HEMT (N2 annealing at 300 ◦C) 24.92 19.65 34.08

4. Conclusions

AlGaN/GaN MOS-HEMTs with TiO2 as the insulating layer are investigated. The
effects of annealing treatment on the crystal structure of TiO2 are examined. The annealed
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