Water Skating Miniature Robot Propelled by Acoustic Bubbles
Abstract
1. Introduction
2. Working Principle
3. Experiment Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Visvanathan, K.; Shariff, F.; Yee, S.Y.; Basu, A.S. Propulsion and steering of a floating mini-robot based on Marangoni flow actuation. In Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009; pp. 21–25. [Google Scholar]
- Casanova, R.; Arbat, A.; Alonso, O.; Sanuy, A.; Canals, J.; Dieguez, A. An optically programmable SoC for an autonomous mobile mm3-sized microrobot. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2673–2685. [Google Scholar] [CrossRef]
- Jager, E.W.H.; Inganäs, O.; Lundström, I. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 2000, 288, 2335–2338. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef][Green Version]
- Kwon, J.O.; Yang, J.S.; Chae, J.B.; Chung, S.K. Micro-object manipulation in a microfabricated channel using an electromagnetically driven microrobot with an acoustically oscillating bubble. Sens. Actuator A Phys. 2014, 215, 77–82. [Google Scholar] [CrossRef]
- Jeong, J.; Jang, D.; Kim, D.; Lee, D.; Chung, S.K. Acoustically bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sens. Actuator A Phys. 2020, 306, 111973. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Song, J.; Huang, L.; Lin, X.; Liu, J. Water strider-inspired design of a water walking robot using superhydrophobic Al surface. J. Dispers. Sci. Technol. 2018, 39, 1840–1847. [Google Scholar] [CrossRef]
- Mo, X.; Ge, W.; Miraglia, M.; Inglese, F.; Zhao, D.; Stefanini, C.; Romano, D. Jumping locomotion strategies: From animals to bioinspired robots. Appl. Sci. 2020, 10, 8607. [Google Scholar] [CrossRef]
- Jang, D.; Jeong, J.; Song, H.; Chung, S.K. Targeted drug delivery technology using untethered microrobots: A review. J. Micromech. Microeng. 2019, 29, 053002. [Google Scholar] [CrossRef]
- Kong, D.; Nishio, K.; Kurosawa, M.K. Surface acoustic wave propulsion system with acoustic radiation force. Sens. Actuator A Phys. 2020, 309, 111943. [Google Scholar] [CrossRef]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef]
- Behkam, B.; Sitti, M. Design methodology for biomimetic propulsion of miniature swimming robots. J. Dyn. Syst. Meas. Control 2006, 128, 36–43. [Google Scholar] [CrossRef][Green Version]
- Qiu, T.; Lee, T.; Mark, A.G.; Morozov, K.I.; Münster, R.; Mierka, O.; Turek, S.; Leshansky, A.M.; Fischer, P. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kwak, B.; Bae, J. Locomotion of arthropod in aquatic environment and their application in robotics. Bioinspir. Biomim. 2018, 13, 041002. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.L.; Chan, B.; Bush, J.W.M. The hydrodynamics of water strider locomotion. Nature 2003, 424, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Zhu, Q.; Chen, N.; Zhang, M.; Pan, Q. Bioinspired aquatic microrobot capable of walking on water surface like a water strider. ACS Appl. Mater. Interfaces 2011, 3, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yang, K.; Liu, G.; Zhao, J. Flexible driving mechanism inspired water strider robot walking on water surface. IEEE Access 2020, 8, 89643–89654. [Google Scholar] [CrossRef]
- Kwak, B.; Bea, J. Skimming and Steering of a non-tethered Miniature Robot on the Water Surface using Marangoni Propulsion. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3217–3222. [Google Scholar]
- Burton, L.J.; Cheng, N.; Bush, J.W.M. The Cocktail Boat. Integr. Comp. Biol. 2014, 54, 969–973. [Google Scholar] [CrossRef][Green Version]
- Bush, J.W.M.; Hu, D.L. Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 2006, 38, 339–369. [Google Scholar] [CrossRef]
- Hu, D.L.; Bush, J.W.M. Meniscus-climbing insects. Nature 2005, 437, 733–736. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, M.; Li, X.; Zheng, Q. Meniscus-climbing behavior and its minimum free-energy mechanism. Langmuir 2007, 23, 10546–10550. [Google Scholar] [CrossRef]
- Chung, S.K.; Ryu, k.; Cho, S.K. Electrowetting propulsion of water-floating objects. Appl. Phys. Lett. 2009, 95, 014107. [Google Scholar] [CrossRef]
- Yang, J.S.; Kwon, J.O.; Chae, J.B.; Choi, M.; Chung, S.K. Electrowetting-on-dielectric (EWOD) induced flow analysis. J. Micromech. Microeng. 2015, 25, 087001. [Google Scholar] [CrossRef]
- Yuan, Y.; Feng, J.; Cho, S.K. Cheerios effect controlled by electrowetting. Langmuir 2015, 31, 8502–8511. [Google Scholar] [CrossRef] [PubMed]
- Mita, Y.; Li, Y.; Kubota, M.; Morishita, S.; Parkes, W.; Haworth, L.I.; Flynn, B.W.; Terry, J.G.; Tang, T.B.; Ruthven, A.D.; et al. Demonstration of a wireless driven MEMS pond skater that uses EWOD technology. Solid State Electron. 2009, 53, 798–802. [Google Scholar] [CrossRef]
- Song, Y.S.; Sitti, M. Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments. IEEE Trans. Robot. 2007, 23, 578–589. [Google Scholar] [CrossRef]
- Dijkink, R.J.; Van Der Dennen, J.P.; Ohl, C.D.; Prospertti, A. The ‘acoustic scallop’: A bubble-powered actuator. J. Micromech. Microeng. 2006, 16, 1653. [Google Scholar] [CrossRef][Green Version]
- Won, J.M.; Lee, J.H.; Lee, K.H.; Rhee, K.; Chung, S.K. Propulsion of Water-Floating Objects by Acoustically Oscillating Microbubbles. Int. J. Precis. Eng. Manuf. 2011, 12, 577–580. [Google Scholar] [CrossRef]
- Feng, J.; Yaun, J.; Cho, S.K. 2-D steering and propelling of acoustic bubble-powered microswimmers. Lab Chip 2016, 12, 2317–2325. [Google Scholar] [CrossRef]
- Liu, F.; Cho, S.K. 3-D swimming microdrone powered by acoustic bubbles. Lab Chip 2021, 21, 355–364. [Google Scholar] [CrossRef]
- Elder, S.A. Cavitation microstreaming. J. Acoust. Soc. Am. 1959, 31, 54–64. [Google Scholar] [CrossRef]
- Kawahara, T.; Sugita, M.; Hagiwara, M.; Arai, F.; Kawano, H.; Shihira-Ishikawa, I.; Miyawaki, A. On-chip microrobot for investigating the response of aquatic microorganisms to mechanical simulation. Lab Chip 2013, 13, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Leighton, T.G. The Acoustic Bubble; Academic Press: London, UK, 1994; pp. 302–306. [Google Scholar]
- Glezer, A.; Amitay, M. Synthetic jets. Annu. Rev. Fluid Mech. 2002, 34, 503–529. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Kim, D.; Chung, S. Water Skating Miniature Robot Propelled by Acoustic Bubbles. Micromachines 2023, 14, 999. https://doi.org/10.3390/mi14050999
Song H, Kim D, Chung S. Water Skating Miniature Robot Propelled by Acoustic Bubbles. Micromachines. 2023; 14(5):999. https://doi.org/10.3390/mi14050999
Chicago/Turabian StyleSong, Hyeonseok, Daegeun Kim, and Sangkug Chung. 2023. "Water Skating Miniature Robot Propelled by Acoustic Bubbles" Micromachines 14, no. 5: 999. https://doi.org/10.3390/mi14050999
APA StyleSong, H., Kim, D., & Chung, S. (2023). Water Skating Miniature Robot Propelled by Acoustic Bubbles. Micromachines, 14(5), 999. https://doi.org/10.3390/mi14050999