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Abstract: In high-aspect ratio laser drilling, many laser and optical parameters can be controlled, 

including the high-laser beam fluence and number of drilling process cycles. Measurement of the 

drilled hole depth is occasionally difficult or time consuming, especially during machining pro-

cesses. This study aimed to estimate the drilled hole depth in high-aspect ratio laser drilling by using 

captured two-dimensional (2D) hole images. The measuring conditions included light brightness, 

light exposure time, and gamma value. In this study, a method for predicting the depth of a ma-

chined hole by using a deep learning methodology was devised. Adjusting the laser power and the 

number of processing cycles for blind hole generation and image analysis yielded optimal condi-

tions. Furthermore, to forecast the form of the machined hole, we identified the best circumstances 

based on changes in the exposure duration and gamma value of the microscope, which is a 2D image 

measurement instrument. After extracting the data frame by detecting the contrast data of the hole 

by using an interferometer, the hole depth was predicted using a deep neural network with a pre-

cision of within 5 μm for a hole within 100 μm.  
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1. Introduction 

A semiconductor test probe is a component that connects a semiconductor chip and 

test equipment to check the operation of the semiconductor die. When it makes contact 

with the pad or solder bump on the wafer, the probe pin located on the probe card, which 

is a consumable component, delivers electricity and evaluates if the chip is good or defec-

tive according to the signal returned at the moment. The substrate is drilled to provide 

support for the probe tip. Recently, as the degree of substrate integration has been en-

hanced, the spacing between holes has shrunk to 40 μm or less, the hole diameter has 

shrunk to 30 μm, and approximately 20,000 holes are now required per board. 

Compared to mechanical hole processing, hole processing using a laser has the ad-

vantage of a shorter manufacturing process and easy re-processing when the probe card 

is worn out. Furthermore, a laser enables micro-hole processing and is simple to process 

with a high degree of substrate integration. [1,2]. The work that requires high integration 

of laser processing is sensitive to changes in mechanical factors such as deformation of the 

processing board owing to heat. Because heat does not affect the substrate during femto-

second laser processing, a femtosecond laser is essential for heat-sensitive microfabrica-

tion. [2,3]. Also, since it has a short pulse duration time of 10−15 seconds and generates high 

peak power with low pulse energy, it is widely used in laser micro-processing. In addi-

tion, recently, studies on improving the fatigue and corrosion performance of materials 

by induction surface modification technology using femtosecond lasers [4,5] and laser 

cleaning studies on the breakdown of air with high peak energy have been conducted [6]. 
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Because the result value according to the variable seems nonlinear, it is difficult to 

anticipate the outcome under any processing conditions because of the nature of laser 

processing [7,8]. Furthermore, laser processing may produce varying results owing to ex-

ternal environmental factors. To manufacture high-quality probe cards, machining defects 

caused by numerous factors must be compensated by employing accurate values of the 

process variables. 

The quantity of light incident in a hole diminishes as the depth of the hole increases, 

making the depth measuring of a blind hole in laser micromachining difficult with an eye-

dependent measurement method such as an optical microscope. There is also a way of 

directly examining the cross-section of the blind hole by polishing [9], although objective 

depth measurement is problematic owing to grinding parameters. To objectively and ac-

curately measure, numerous measuring tools and methodologies have been proposed 

[10–13]. 

Shetty [10] demonstrated a novel optical methodology for detecting the existence and 

depth of blind holes in turbine blades. The depth and width of the holes were measured 

based on the angle and time of the reflected beam after an obliquely incident laser beam 

was irradiated into them. A new optical measurement approach for an aircraft jet engine’s 

blind hole was presented, and because it is a way of measuring one hole in one process, 

productivity is low for procedures that need approximately 20,000 holes to be measured. 

Wu [11] investigated the depth measuring of through holes in the field of automatic 

drilling and rivets. A probe was placed in a hole, and the depth was measured by receiving 

the laser signal according to the location via the charge-coupled device (CCD) sensor. The 

depth parameter may be correctly measured using the approach presented in the study, 

and the accuracy and stability required to fulfill the depth measuring criteria for auto-

mated drilling and riveting of large composite board pieces were proven. However, the 

probe diameter was 2 mm, making it unsuitable for detecting the depth of micro-holes. 

White light interferometry is a high-precision measuring technique that produces 

three-dimensional geometric data such as length, surface profile, roughness, and depth. 

[12]. Mezzapesa [13] used a laser self-mixing interferometry approach to address the 

drawbacks of the existing double-arm interferometer method to measure ultra-high-speed 

laser drilling holes in a metal plate with a resolution of 0.41 μm. The hole depth measure-

ment method using a white light interferometer had a very fast response time and high 

resolution measurement accuracy, but the system configuration, such as the use of a var-

iable wavelength laser, the configuration of an optical system for an interferometer, and 

high-precision measurement equipment, is complex and expensive. 

Because of its low costs, high speed, automation, and vast area processing, machine 

vision is utilized in the field of hole inspection [14]. Wang [15] created an automatic optical 

inspection method based on machine vision to recognize the positions, defects, and ab-

sence of holes on printed circuit boards (PCBs). After labeling the image, basic dimensions 

such as hole area, circularity, center, opening, etc. were calculated and the basic dimen-

sions and matching methods were used to identify the errors, ranges, omissions, etc. of 

the hole. It was discovered to have good performance in measuring two-dimensional ge-

ometric data such as hole diameter and position in the case of machine vision. It is not, 

however, appropriate for acquiring information in the depth direction. 

Ho [16,17] used machine vision to detect glass surface profiles and defects during a 

laser-cutting process. The image pre-processing process and the use of deep learning tech-

niques enhanced the detection process of defects in glass. It is significant that the glass 

defect was predicted using machine vision. 

In this study, an interferometer was used to measure the hole processing depth while 

the laser processing parameters were varied; a deep learning model was devised for pre-

dicting measured data using 2D images. The light that enters the hole is continually re-

flected and absorbed by the inner wall of the hole; the deeper the hole, the less reflected 

would be the light. Therefore, the depth of the hole may be estimated using data from an 

optical microscope measuring the quantity of light entering and being reflected from the 
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inside of the hole. Uniform lighting and an exterior environment are required in this re-

gard. Furthermore, the hole diameter parameters were analyzed in this study, together 

with the amount of light, to improve the discriminating power of the model. 

2. Experiment 

2.1. Configuration of the Laser Processing Equipment 

In this experiment, silicon nitride (Si3N4) was used as the probe card material. The 

thickness of the silicon nitride used was 200 μm, and the laser focus was on the surface of 

the silicon nitride. To perform the machining process, a Yb:KGW laser (Pharos, Light Con-

version, Vilnius, Lithuania) with a pulse width of 233 fs was used. Furthermore, a UV 

wavelength was used, and the pulse energy used was 2.6 μJ. The processing equipment 

configuration is shown in Figure 1a. It can be seen that the laser light passes through the 

optical system and the Galvano scanner (IntelliSCAN10, Scanlab, Munchen, Germany) to 

process the specimen. Figure 1b shows a schematic design of the processing equipment 

structure. A computer is used to control the laser and scanner. A laser repetition rate of 50 

kHz and an output power of 130 mW were used to process a 50 μm diameter hole. The 

laser drilling method used a trepanning method, considering the hole diameter. Hole pro-

cessing was carried out by varying the number of processing cycles from 1 to 20, in order 

to predict the depth of the processed hole based on the number of processing cycles. 

  
(a) (b) 

Figure 1. Equipment configuration for laser processing: (a) actual equipment for laser processing; 

(b) schematic of laser processing. 

2.2. Effective Diameter and Depth Measurement Method for Hole Processing Geometry Analysis 

Accurate measurement of actual measurement data is necessary to forecast the depth 

of 2D images by using deep learning algorithms. The shape of the hole produced in silicon 

nitride was measured using an optical microscope (Measuring microscope MM-800, Ni-

kon, Tokyo, Japan) and an interferometer (WI-001, Keyence, Osaka, Japan). An optical mi-

croscope with coaxial illumination (epi-illuminator) was used as shown in Figure 2a. The 

diameter was measured as shown in Figure 2b. In addition, the optical microscope was 

utilized to determine the depth of the hole using the defocus measurement technique 

(DMM) [18], and in this method, when the depth of the hole exceeds roughly 150 μm, the 
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bottom of the hole is not focused, making measuring impossible. An interferometer, as 

illustrated in Figure 2c, was utilized to quantify the objective hole depth based on the 

number of processing cycles; it is a laser-based method for determining depth, utilizing 

the interference effect. The profile of the hole processed by the interferometer is shown in 

Figure 2d. This hole-processing shape data was digitized to determine the hole depth. 

Interferometers have a fine depth data resolution of less than 1 μm; however, because the 

diameter resolution is less than 4 μm, accurately measuring the hole diameter is difficult. 

The depth of the processed hole was determined using the minimum value among the 

depth profile data to check the similarity between the depth obtained by interferometry 

and the DMM approach using an optical microscope. The measurement technique gener-

ated the most comparable value to the DMM approach by utilizing the minimum profile 

value in the graphs in Figure 2e,f. 

 

Figure 2. Equipment for measuring diameter and depth, as well as a method for analyzing hole 

processing geometry. (a) Optical microscope for diameter measurement; (b) diameter measurement 

image using an optical microscope; (c) interferometer for depth measurement; (d) depth profile 

measured using an interferometer; (e) comparison of optical microscope and interferometric depth 

measurement according to the number of processing cycles under a of laser power of 105 mW; (f) 

comparison of optical microscope and interferometric depth measurements according to the num-

ber of processing cycles under a laser power 130 mW. 

2.3. Processing Hole Shape According to Laser Processing Frequency and Power 

Experiments were carried out by varying the laser strength to generate blind holes in 

silicon nitride. When the laser intensity is increased, a hole deeper than the thickness of 
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silicon nitride is formed, resulting in a through hole rather than a blind hole. Furthermore, 

if the laser power is low or the number of processing cycles increases, the peak energy 

needed to generate ablation in silicon nitride is insufficient, and melting occurs inside the 

hole owing to heat accumulation as the number of processing cycles increases. Figure 3a 

shows the rear side of the silicon nitride as the laser power was increased from 130 mW 

to 155 mW at pulse energy 2.6 μJ to 3.1 μJ. The peak power of the laser pulse was about 

1.1 × 107 W to 1.3 × 107 W. When the power of the laser was 145 mW and 155 mW, the rear 

side of the silicon nitride was pierced; however, when the power was set to 130 mW, the 

rear side of the silicon nitride was not pierced. Figure 3b shows the results of processing 

from 1 to 100 under a power of 130 mW. In Figure 3b, molten material was visible within 

the holes processed 25 to 100 times, and analysis of the molten material by SEM-EDS re-

vealed that the material and composition were consistent with silicon nitride. In Figure 

4a, the depth was measured according to the number of processing cycles when the laser 

power was 82 mW, 105 mW, and 130 mW. It was proven that the depth was not constant 

owing to melting inside the hole, as illustrated in Figure 4b, when the number of pro-

cessing cycles was 15 or more at 82 mW and 105 mW. Therefore, the hole was processed 

under a laser power of 130 mW. 

 

Figure 3. (a) Images of the back side of silicon nitride comparing the penetration power at laser 

power of 130 mW, 145 mW, and 155 mW; (b) comparison of holes obtained after 1 to 100 processing 

cycles at laser powers of 130 mW. 
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(a) (b) 

Figure 4. (a) Comparison of processing hole depth according to laser power and number of pro-

cessing cycles; (b) observation image of molten material inside the processing hole for the outlier in 

(a). 

2.4. Image Analysis according to Brightness, Exposure Time, and Gamma Value 

To forecast the depth of a hole under multiple conditions using 2D images obtained 

using a microscope, a distinction between the features of each condition and the surround-

ing conditions is required. Therefore, the dynamic range of the contrast within the hole 

according to the brightness, which is the lighting condition, was analyzed to optimize the 

gray scale data, which are the contrast data of the image. The dynamic range was deter-

mined as the gray scale difference between the depths of the shallowest hole and the deep-

est hole; the deepest hole had been processed 20 times. Figure 5a shows the dynamic range 

when the lighting brightness was adjusted from 5 to 10. The measurement revealed that 

the brighter the illumination, the higher the dynamic range. The amount of light reflected 

by incident light into the hole reduces as the depth of the hole increases. At this point, 

increasing the quantity of light incident into the hole by altering the brightness of the light 

increases the amount of light detected. Figure 5b shows the depth contrast data for each 

number of laser treatments at the highest lighting brightness level of 10. Because the 

amount of light reflected from the inside of the hole is restricted, the contrast data con-

verges after around 10 repetitions of laser processing. 

 
(a) (b) 

Figure 5. Dynamic range based on light intensity and number of laser treatments: (a) change in 

dynamic range as a function of light brightness; (b) gray scale and dynamic range as a function of 

the number of laser treatments and the hole processed under a laser power of 130 mW. 
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The dynamic range of the contrast inside the hole was investigated in relation to ex-

posure duration and gamma correction value. As the exposure period grows, the amount 

of light that had been gathered and the brightness of the image also increase. Figure 6a 

compares the measurement data left and right images of the depth of the shallowest hole 

and the depth of the deepest hole, which was processed 20 times, under 10, 30, 50, 70, and 

80 ms exposure time conditions. Background areas are dominant at 10 ms and remained 

at the borders even at 30 ms. Only the contrast inside the hole remained in the image after 

50 ms, and data began to be lost when the depth was shallow after 70 ms. As depicted in 

Figure 7a, the image results were normalized with the highest gray value according to 

exposure time and shown in arbitrary units (AUs) to compare with the depth of the actual 

machined hole. The condition with the highest similarity to the actual hole measurement 

value was 50 ms, and the value was almost linearly decreased according to the number of 

laser repetitions. When the slope of each data set was compared to the actual hole depth, 

the condition of 50 ms was determined to be the closest. The dynamic range expands when 

the brightness of the image increases but decreases at on exposure time of 50 ms. Further-

more, it was discovered that under the condition of 80 ms, a significant amount of light 

from the processed section was collected, making it difficult to view the processed shape. 

Gamma correction employs a nonlinear transfer function to modify the intensity of 

light, and image discernment can be improved by selecting an appropriate gamma value. 

Figure 6b shows a comparison of the measurement data left and right images of the depth 

of the shallowest hole and the depth of the deepest hole, which was processed 20 times 

under each gamma correction condition based on a 50 ms exposure duration. Figure 7b 

shows the outcome based on the gamma value. It demonstrated the most comparable ten-

dency to the actual hole measurement value under a gamma of 140, and the slope value 

was also the closest to the actual measurement. Therefore, a brightness of 10, exposure 

time of 50 ms, and gamma of 140 were selected as optimal conditions to maximize hole 

depth discrimination. 

 
(a) (b) 

Figure 6. (a) Image photograph according to the exposure time of the optical microscope. (b) Image 

picture according to the gamma value. 
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(a) (b) 

Figure 7. (a) Correlation between the real hole depth and gray scale according to optical microscope 

exposure duration. (b) Correlation between the real hole depth and gray scale based on the optical 

microscope gamma value. 

2.5. Data Preprocessing 

A masking technique was performed to eliminate the data from the unprocessed region 

in order to quantitatively discern solely the contrast inside the hole. An area of 170 × 170 pixels 

was retrieved by cutting away the outside region, using a square area in the middle of the hole 

as a mask and averaging the contrast data. The processed data and label data were arranged 

into a 10 × 20 × 3 data frame based on the experimental sequence and circumstances. When 

the data set of contrast characteristics is shown as a scatter plot, as illustrated in Figure 8a, data 

that are clearly distinguished from other points are included. These values should be consid-

ered outliers and eliminated. In two steps, outliers were discovered using the standard devia-

tion approach, and then values with a standard deviation of ±2 or more were selected to re-

move outliers near the mean. Missing value processing was then performed for the removed 

outliers. Missing values were replaced with the average value of the same processing condi-

tion data. Figure 8b shows the data after the outliers have been removed and missing values 

have been processed. In this method, the imported data were scaled to reduce the scale gap 

between the image processing input data and the carefully measured label data. As a scaling 

approach, the Z-score normalization was employed to normalize all characteristics so that they 

all had a distribution with a mean of 0 and a standard deviation of 1. 

 
(a) (b) 

Figure 8. (a) Scatter plot of the intensity data by processing number, including outliers and missing 

values; (b) scatter plot of the intensity data by processing number, with outliers and missing values 

eliminated using the standard deviation approach. 
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3. Deep Learning Study 

3.1. Model Construction 

To develop a prediction model, a deep learning model was built and trained in Py-

thon using TensorFlow and Keras. The Keras model employs a sequential model in which 

layers are successively built, with a Dense layer serving as the layer. Each neuron in the 

Dense layer gets inputs from all neurons in the preceding layer and adds weights that link 

the inputs and outputs. The activation function was the hyperbolic tangent function, a 

nonlinear function with two input characteristics, one output characteristic, and two hid-

den layers. 

In the compilation step of setting up the learning process of the model, the optimizer, 

loss function, and metric used were the adaptive moment estimation (Adam), mean 

squared error (MSE), and mean absolute error (MAE), respectively. 

The optimizer is responsible for determining the best possible outcome at the lowest 

possible cost, based on the actual result and the result predicted by the model during the 

learning phase using the training dataset. The Adam optimizer was developed by com-

bining the benefits of RMSProp, which adjusts the learning rate, and Momentum, which 

changes the route, and is the most often used optimization technique. The loss function 

seeks to discover the weights that comprise the loss function throughout the training 

phase. The MSE is calculated by averaging the squared difference between the actual and 

anticipated results, and it has the benefit of highlighting the area where the error is most 

noticeable. The metric is an evaluation index that decides which index to examine while 

evaluating performance during the model verification step. Because the MSE computes 

the square of the error, it is sensitive to outliers because the real error becomes larger than 

the average error. The square root of the MSE was used to calculate the root mean square 

error (RMSE), which may be used to mitigate these drawbacks. The MAE is calculated by 

considering the difference between the actual and expected results as an absolute value 

and then averaging it. Of the 200 data points, 140 were classified as training data, and 60 

data were classified as the test data. The built model was trained for 200 epochs using the 

training data, and the trained model was tested for loss, the MAE, and the RMSE using 

the test data to verify the model. 

3.2. Hyperparameter Optimization 

To improve the model’s performance through hyperparameter optimization, the 

MAE of the model built by modifying the number of layers and the number of nodes in 

each layer was compared. By adjusting the optimizer’s learning rate, optimal circum-

stances were discovered. 

The model’s structure was determined through the addition of a hidden layer. The 

first and last layers were fixed at two and one nodes, respectively, to identify the structure 

of the model, and the experiment was conducted by varying the number of hidden layers 

and the number of nodes in each hidden layer. The experimental settings and results are 

given in Figure 9 and Table 1. The MAE for the training data reduced as the number of 

hidden layers and nodes grew, whereas the MAE for the validation data increased. It is 

determined that overfitting happened as the model’s complexity increased. The two layer–

four node model with the lowest validation MAE value was used for continued learning. 

To determine the appropriate learning rate for the optimizer, we performed two pro-

cedures, and it was confirmed that the MAE value for the test data was dropped at a learn-

ing rate of 10−3–10−1 when the model was generated by randomly specifying 100 integers 

in the range of 10−6–10−1. The MAE value for the test data was acquired with a model de-

veloped by randomly defining 100 values in the range of 10−3–10−1 to obtain a more accu-

rate learning rate. Finally, it was determined that the model performed best at learning 

rates ranging from 0.08 to 0.09; thus, the model’s learning rate was set to 0.08. 
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Figure 9. Results of training MSE and validation MAE according to the condition of the number of 

nodes in the hidden layer. 

Table 1. Number of hidden layers and the MAE value for each node condition. 

Number of Hidden Layers 
Number of 

Nodes 
Training & Validation MAE 

2 hidden layers 

4 nodes 
Training 0.1594 

Validation 0.1896 

8 nodes 
Training 0.1581 

Validation 0.1915 

3 hidden layers 

4 nodes 
Training 0.1573 

Validation 0.1961 

8 nodes 
Training 0.1543 

Validation 0.1993 

3.3. Learning Result 

Learning was carried out across 200 epochs using preprocessed data and the model 

chosen for optimization. The MAE value according to the period is shown in Figure 10a, 

and a final score of 0.2172 was attained. Because this is a normalized result, the MAE value 

of the real data may be determined by multiplying the standard deviation of this data by 

6.97. This indicates that the model trained on the hole image’s contrast and diameter data 

can estimate the real hole depth with an average error value of 6.97 μm. Figure 11a com-

pares real data to data predicted by the learning model, with the dotted line indicating the 

±5 μm point. As shown in the picture, the forecast error increases in the part where the 

actual machining depth is significant. This is apparently because, as the number of process 

cycles and hole depth increase, the contrast difference between adjacent situations re-

duces, and the discriminating power decreases. Looking at Figure 8b, while the data un-

der the same processing settings had a contrast deviation of roughly five, data in a region 

with a high number of iterations are difficult to distinguish using the learning model be-

cause the contrast difference in the proximity condition is only one to two. 

By modifying the input data, the number of processing cycles was 1 to 10, and the 

same model was trained. Figure 10b shows the MAE value according to the epoch. A final 
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value of 0.1566 was obtained. This indicates that the actual hole depth can be predicted 

with an average error of 3.86 μm, and the prediction accuracy increases as compared to 

learning the current data 1 to 20 times. Figure 11b shows that pictures within the real 

depth of 100 μm are accurately predicted; however, at depths beyond that, the inaccuracy 

becomes predominant and the number of points out that beyond the green dotted line, 

which is the 5 μm increases. A depth of 100 μm corresponds to an aspect ratio of two 

based on a machined hole diameter of 50 μm, and it was demonstrated that a hole with a 

lesser depth may be predicted with less than 5 μm accuracy. 

  
(a) (b) 

Figure 10. Outcome of selecting the best model and training it for 200 epochs. (a) An MAE result of 

0.2172 was obtained based on the epoch for the condition of 1 to 20 processing times. (b) An MAE 

result of 0.1566 was obtained based on the epoch for the condition of 1 to 10 processing times. 

  

(a) (b) 

Figure 11. Comparison of actual data and data predicted by the learning model, and the dotted line 

is the point with a prediction error of ±5 μm. (a) Comparisons under conditions of 1 to 20 processing 

times. (b) Comparison under conditions of 1 to 10 processing times. 

4. Conclusions 

The silicon nitride support plate of a probe card was treated using a femtosecond 

laser for each number of processing cycle to obtain 2D images, and an experiment was 

carried out using deep learning to forecast the real hole depth based on data acquired by 

2D photographs. The number of processing cycles with the gray scale value, which is the 

contrast data value of the 2D picture, was used to predict the depth of the hole. 

The detection of incident light reduced as the depth of the hole increased, making it 

more difficult to examine the 2D picture. Therefore, an experiment was performed to 

gather a large amount of light by altering the brightness of the light to 5 to 10 and the 

exposure period to 10 to 80 ms. As a result, the light’s maximum brightness was 10 and 
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the dynamic range displays the highest value for an exposure duration of 70 ms. Also, 

experiments were carried out by increasing the gamma value to 100, 140, and 180 to get a 

comparable gray scale data distribution with the data measuring the depth of the ma-

chined hole. The gamma value helps correct the picture by employing a nonlinear light 

intensity transfer function. When the exposure period is 50 ms and the condition is 140, 

the gamma value exhibits the most comparable data distribution to the actual hole depth 

measurement value. 

Learning was conducted over 200 epochs using preprocessed data and a Python-

based prediction model. For the holes that were machined 1 to 20 times, the depth was 

estimated with an average inaccuracy of 6.97 μm. The depth was estimated from 1 to 10 

with an average inaccuracy of 3.86 μm. In addition, the model predicts holes with a depth 

of 100 μm or less with an accuracy of 5 μm or less. This study affords a method for pre-

dicting the hole processing depth using 2D pictures obtained by analyzing laser-machined 

holes with a microscope. Research is underway to realize universal prediction by securing 

data based on the varied dimensions of the machined holes. 
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