A Frequency Reconfigurable Folded Antenna for Cognitive Radio Communication
Abstract
1. Introduction
2. Folded Antenna
3. The Results of the Suggested Configuration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Vincent, S. Ultrawideband Antennas: Growth and Evolution. Micromachines 2021, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Dwari, S. Compact CPW-Fed ultrawideband MIMO antenna using hexagonal ring monopole antenna elements. AEU Int. J. Electron. Commun. 2018, 93, 1–6. [Google Scholar] [CrossRef]
- Hu, Y.; Du, K.; Zhang, L.; Wang, Y.; Kang, X. A Design for a Wide-Band Antenna Pair Applied for Mobile Terminals at the Sub-6 GHz Band. Appl. Sci. 2022, 13, 331. [Google Scholar] [CrossRef]
- Alaa, A.M.; Ismail, M.H.; Tawfik, H. Spectrum sensing via reconfigurable antennas: Fundamental limits and potential gains. Telecommun. Syst. 2016, 62, 581–602. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Mohamed, H.A.; Rizo, A.R.D.; Parra-Michel, R.; Aboushady, H. Tunable Filtenna With DGS Loaded Resonators for a Cognitive Radio System Based on an SDR Transceiver. IEEE Access 2022, 10, 32123–32131. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Wang, W.; Kishk, A.A. A simple multi-broadband planar antenna for LTE/GSM/UMTS and WLAN/WiMAX mobile handset applications. IEEE Access 2018, 6, 74453–74461. [Google Scholar] [CrossRef]
- Yang, L.; Cui, Y.-H.; Li, R.-L. A multiband uniplanar antenna for LTE/GSM/UMTS, GPS, and WLAN/WiMAX handsets. Microw. Opt. Technol. Lett. 2015, 57, 2761–2765. [Google Scholar] [CrossRef]
- Affandi, A.; Azim, R.; Alam, M.; Islam, M.T. A Low-Profile Wideband Antenna for WWAN/LTE Applications. Electronics 2020, 9, 393. [Google Scholar] [CrossRef]
- Nayak, P.B.; Verma, S.; Kumar, P. Multiband fractal antenna design for Cognitive radio applications. In Proceedings of the International Conference on Signal Processing and Communication (ICSC), Noida, India, 12–14 December 2013; pp. 115–120. [Google Scholar]
- Wang, L.; Yu, J.; Xie, T.; Bi, K. A Novel Multiband Fractal Antenna for Wireless Application. Int. J. Antennas Propag. 2021, 2021, 9926753. [Google Scholar] [CrossRef]
- David, R.; Aw, M.; Ali, T.; Kumar, P. A Multiband Antenna Stacked with Novel Metamaterial SCSRR and CSSRR for WiMAX/WLAN Applications. Micromachines 2021, 12, 113. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Lin, Z.; Ran, X. Design of Window Grille Shape-Based Multiband Antenna for Mobile Terminals. Int. J. Antennas Propag. 2021, 2021, 6684959. [Google Scholar] [CrossRef]
- Patel, R.; Desai, A.; Upadhyaya, T.; Nguyen, T.K.; Kaushal, H.; Dhasarathan, V. Meandered low profile multiband antenna for wireless communication applications. Wirel. Netw. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Mishra, R.; Dandotiya, R.; Kapoor, A.; Kumar, P.; Zhang, Z.; Liu, J.; Su, J.; Song, J.; Gao, Y.; Peng, W.; et al. Compact high gain multiband antenna based on split ring resonator and inverted F slots for 5G industry applications. Appl. Comput. Electromagn. Soc. 2021, 36, 999–1007. [Google Scholar] [CrossRef]
- Dayo, Z.; Cao, Q.; Wang, Y.; Soothar, P.; Khoso, I.; Shah, G.; Aamir, M.; Kaburcuk, F.; Kalinay, G.; Chen, Y.; et al. A compact high gain multiband bowtie slot antenna with miniaturized triangular shaped metallic ground plane. Appl. Comput. Electromagn. Soc. 2021, 36, 935–945. [Google Scholar] [CrossRef]
- Salamin, M.A.; Ali, W.; Zugari, A. Design and analysis of a miniaturized band-notched planar antenna incorporating a joint DMS and DGS band-rejection technique for UWB applications. Microsyst. Technol. 2018, 25, 3375–3385. [Google Scholar] [CrossRef]
- Salamin, M.; Ali, W.; Zugari, A. A novel UWB antenna using capacitively-loaded fork-shaped resonator and modified fork-shaped DMS for interference mitigation with WiMAX and WLAN applications. J. Instrum. 2019, 14, P03008. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, X.; Awan, W.; Naqvi, A.; Hussain, N.; Alibakhshikenari, M.; Limiti, E. A Flexible and Pattern Reconfigurable Antenna with Small Dimensions and Simple Layout for Wireless Communication Systems Operating over 1.65–2.51 GHz. Electronics 2021, 10, 601. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Moniem, R.M.A. Frequency reconfigurable triple band-notched ultra-wideband antenna with compact size. Prog. Electromagn. Res. C 2017, 73, 37–46. [Google Scholar] [CrossRef][Green Version]
- Islam, H.; Das, S.; Ali, T.; Bose, T.; Prakash, O.; Kumar, P. A Frequency Reconfigurable MIMO Antenna with Bandstop Filter Decoupling Network for Cognitive Communication. Sensors 2022, 22, 6937. [Google Scholar] [CrossRef]
- Zaidi, A.; Awan, W.A.; Ghaffar, A.; Alzaidi, M.S.; Alsharef, M.; Elkamchouchi, D.H.; Ghoneim, S.S.M.; Alharbi, T.E.A. A Low Profile Ultra-Wideband Antenna with Reconfigurable Notch Band Characteristics for Smart Electronic Systems. Micromachines 2022, 13, 1803. [Google Scholar] [CrossRef]
- Abdelghany, M.A.; Ali, W.A.E.; Mohamed, H.A.; Ibrahim, A.A. Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines 2023, 14, 160. [Google Scholar] [CrossRef] [PubMed]
- Rouissi, I.; Trad, I.B.; Floc’h, J.M.; Rmili, H.; Trabelsi, H. Design of frequency reconfigurable triband antenna using capacitive loading for wireless communications. In Proceedings of the 2015 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2–3 November 2015; pp. 1–5. [Google Scholar]
- Lee, M.; Ahn, J.; Kim, Y. Compact dual-band antenna with a lumped capacitor for wireless local area network applications. IET Microw. Antennas Propag. 2015, 9, 1747–1754. [Google Scholar] [CrossRef]
- Cleetus, R.M.C.; Bala, G.J. Wide-narrow switchable bands microstrip antenna for cognitive radios. Prog. Electromagn. Res. C 2020, 98, 225–238. [Google Scholar] [CrossRef]
Ref. | εr/h (mm) | Size (mm2) | fo (GHz) | No.# of Freqs. | Actuators |
---|---|---|---|---|---|
[18] | 2.1/0.254 | 40 × 50 | 1.8, 2.1 | 2 | 2 PIN diodes |
[19] | 4.4/1.6 | 20 × 20 | 3.6, 5.5, 8.1 | 3 | 2 PIN diodes |
[20] | 4.4/1.6 | 48 × 24 | 1.77, 4.75 | 2 | 1 PIN diode |
[21] | 4.5/1.524 | 17 × 23 | 3.5, 5.2 | 2 | 2 PIN diodes |
[22] | 3.38/0.813 | 80 × 80 | 2.16, 2.8, 3 | 3 | 4 varactor diodes |
[23] | 2.2/1.6 | 80 × 80 | 1.51, 1.91, 2.45 | 3 | 2 lumped capacitors |
[24] | 4.4/0.8 | 65 × 100 | 2.4, 5 | 2 | 1 lumped capacitor |
[25] | 4.4/1.6 | 40 × 40 | 4, 5.6, 5.8, 7.2, 7.8 | 5 | 6 MEMS |
This work | 3.38/0.813 | 60 × 60 | 1.5–3.5, 1.6, 2, 2.5, 3 | 6 | 4 PIN diodes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.A.; Ali, W.A.E.; Alathbah, M.; Mohamed, H.A. A Frequency Reconfigurable Folded Antenna for Cognitive Radio Communication. Micromachines 2023, 14, 527. https://doi.org/10.3390/mi14030527
Ibrahim AA, Ali WAE, Alathbah M, Mohamed HA. A Frequency Reconfigurable Folded Antenna for Cognitive Radio Communication. Micromachines. 2023; 14(3):527. https://doi.org/10.3390/mi14030527
Chicago/Turabian StyleIbrahim, Ahmed A., Wael A. E. Ali, Moath Alathbah, and Hesham A. Mohamed. 2023. "A Frequency Reconfigurable Folded Antenna for Cognitive Radio Communication" Micromachines 14, no. 3: 527. https://doi.org/10.3390/mi14030527
APA StyleIbrahim, A. A., Ali, W. A. E., Alathbah, M., & Mohamed, H. A. (2023). A Frequency Reconfigurable Folded Antenna for Cognitive Radio Communication. Micromachines, 14(3), 527. https://doi.org/10.3390/mi14030527