Comparative Study on Microstructure of Mo/Si Multilayers Deposited on Large Curved Mirror with and without the Shadow Mask
Abstract
1. Introduction
2. Experimental Details
3. Results
3.1. Multilayers Thickness Control on Large Curved Substrate
3.2. Grazing Incidence X-ray Reflectivity (GIXR)
3.3. Atomic Force Microscopy (AFM)
3.4. Diffuse X-ray Scattering
3.5. X-ray Diffraction (XRD)
3.6. EUV Reflectivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spiller, E. Low-loss reflection coatings using absorbing materials. Appl. Phys. Lett. 1972, 20, 365–367. [Google Scholar] [CrossRef]
- Underwood, J.H.; Thompson, A.C.; Wu, Y.; Giauque, R.D. X-ray microprobe using multilayer mirrors. Nucl. Instrum. Methods Phys. Res. Sect. A 1988, 266, 296–302. [Google Scholar] [CrossRef]
- Louis, E.; Yakshin, A.E.; Goerts, P.C.; Oestreich, S.; Maas, E.L.G.; Kessels, M.J.H.; Schmitz, D.; Scholze, F.; Ulm, G.; Muellender, S. Mo/si multilayer coating technology for euvl: Coating uniformity and time stability. Proc. SPIE 2000, 4146, 60–63. [Google Scholar] [CrossRef]
- Braun, S.; Mai, H.; Moss, M.; Scholz, R.; Leson, A. Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors. Jpn. J. Appl. Phys. 2002, 41, 4074. [Google Scholar] [CrossRef]
- Cummings, K.; Ashworth, D.; Bremer, M.; Chin, R.; Fan, Y.-J.; Girard, L.; Glatzel, H.; Goldstein, M.; Gullikson, E.; Kennon, J. Update on the sematech 0.5 NA extreme-ultraviolet lithography (EUVL) microfield exposure tool (MET). Int. Soc. Opt. Photonics 2014, 9048, 421–429. [Google Scholar] [CrossRef]
- Kortright, J.B.; Rice, M.; Franck, K.D. Tunable multilayer EUV/soft X-ray polarimeter. Rev. Sci. Instrum. 1995, 66, 1567–1569. [Google Scholar] [CrossRef]
- Gross, M.; Dligatch, S.; Chtanov, A. Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method. Appl. Opt. 2011, 50, C316–C320. [Google Scholar] [CrossRef]
- Soufli, R.; Hudyma, R.M.; Spiller, E.; Gullikson, E.M.; Schmidt, M.A.; Robinson, J.C.; Baker, S.L.; Walton, C.C.; Taylor, J.S. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography. Appl. Opt. 2007, 46, 3736–3746. [Google Scholar] [CrossRef]
- Dligatch, S.; Gross, M.; Chtanov, A. Ultra-low-reflectance, high-uniformity, multilayer-antireflection coatings on large substrates deposited using an ion-beam sputtering system with a customized planetary rotation stage. Proc. SPIE 2011, 8168, 23–30. [Google Scholar] [CrossRef]
- Oliver, J.B. Analysis of a planetary-rotation system for evaporated optical coatings. Appl. Opt. 2006, 55, 8550–8555. [Google Scholar] [CrossRef]
- Broadway, D.M.; Kriese, M.D.; Platonov, Y.Y. Controlling thin film thickness distributions in two dimensions. Proc. SPIE 2001, 4145, 80–87. [Google Scholar] [CrossRef]
- Oliver, J.B. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity. Appl. Opt. 2017, 56, 5121–5124. [Google Scholar] [CrossRef]
- Guo, C.; Kong, M.; Liu, C.; Li, B. Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system. Appl. Opt. 2013, 52, B26–B32. [Google Scholar] [CrossRef]
- Jaing, C.C. Designs of masks in thickness uniformity. Proc. SPIE 2010, 7655, 412–419. [Google Scholar] [CrossRef]
- Oliver, J.B.; Talbot, D. Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system. Appl. Opt. 2006, 45, 3097–3105. [Google Scholar] [CrossRef]
- Villa, F.; Martinez, A.; Regalado, L.E. Correction masks for thickness uniformity in large-area thin films. Appl. Opt. 2000, 39, 1602–1610. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Yi, K.; Shao, J. Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system. Chin. Opt. Lett. 2014, 12, 053101. [Google Scholar] [CrossRef]
- Liu, C.; Kong, M.; Guo, C.; Gao, W.; Li, B. Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems. Opt. Express 2012, 20, 23790–23797. [Google Scholar] [CrossRef] [PubMed]
- Kortright, J.B.; Gullikson, E.M.; Denham, P.E. Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-X-ray imaging optics. Appl. Opt. 1993, 32, 6961–6968. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, B.; Flaminio, R.; Franc, J.; Michel, C.; Montorio, J.L.; Morgado, N.; Pinard, L. Masking technique for coating thickness control on large and strongly curved aspherical optics. Appl. Opt. 2009, 48, 3760–3765. [Google Scholar] [CrossRef] [PubMed]
- Foltyn, T.; Braun, S.; Moss, M.; Leson, A. Deposition of multilayer mirrors with arbitrary period thickness distributions. Proc. SPIE 2004, 5193, 124–133. [Google Scholar] [CrossRef]
- Arkwright, J.; Underhill, I.; Pereira, N.; Gross, M. Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask. Opt. Express 2005, 13, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Arkwright, J.W. Fabrication of optical elements with better than λ/1000 thickness uniformity by thin-film deposition through a multi-aperture mask. Thin Solid Films 2006, 515, 854–858. [Google Scholar] [CrossRef]
- Morawe, C.H.; Peffen, J.-C. Thickness control of large area X-ray multilayers. Proc. SPIE 2009, 7448, 110–119. [Google Scholar] [CrossRef]
- Yu, B.; Jin, C.; Yao, S.; Li, C.; Wang, H.; Zhou, F.; Guo, B.; Xie, Y.; Liu, Y.; Wang, L. Control of lateral thickness gradients of Mo–Si multilayer on curved substrates using genetic algorithm. Opt. Lett. 2015, 40, 3958–3961. [Google Scholar] [CrossRef] [PubMed]
- Morawe, C.; Peffen, J.C.; Hignette, O.; Ziegler, E. Design and performance of graded multilayers. Proc. SPIE 1999, 3773, 90–99. [Google Scholar] [CrossRef]
- Feigl, T.; Yulin, S.; Benoit, N.; Kaiser, N. EUV multilayer optics. Microelectron. Eng. 2006, 83, 703–706. [Google Scholar] [CrossRef]
- Meng, X.Q.; Fan, X.J.; Guo, H.X. A new formula on the thickness of films deposited by planar and cylindrical magnetron sputtering. Thin Solid Films 1998, 335, 279–283. [Google Scholar] [CrossRef]
- Windt, D.L. IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 1998, 12, 360–370. [Google Scholar] [CrossRef]
- Yulin, S.; Feigl, T.; Kuhlmann, T.; Kaiser, N.; Fedorenko, A.I.; Kondratenko, V.V.; Poltseva, O.V.; Sevryukova, V.A.; Zolotaryov, A.Y.; Zubarev, E.N. Interlayer transition zones in Mo/Si superlattices. J. Appl. Phys. 2002, 92, 1216–1220. [Google Scholar] [CrossRef]
- Haase, A.; Soltwisch, V.; Braun, S.; Laubis, C.; Scholze, F. Interface morphology of mo/si multilayer systems with varying mo layer thickness studied by euv diffuse scattering. Opt. Express 2017, 25, 15441–15455. [Google Scholar] [CrossRef] [PubMed]
- Feigl, T.; Lauth, H.; Yulin, S. Heat resistance of euv multilayer mirrors for long-time applications. Microelectron. Eng. 2001, 57, 3–8. [Google Scholar] [CrossRef]
- Freitag, J.M.; Clemens, B.M. Nonspecular X-ray reflectivity study of roughness scaling in si/mo multilayers. J. Appl. Phys. 2001, 89, 1101–1107. [Google Scholar] [CrossRef]
- Ishino, M.; Yoda, O.; Haishi, Y.; Arimoto, F.; Takeda, M.; Watanabe, S. Boundary structure of mo/si multilayers for soft X-ray mirrors. Jpn. J. Appl. Phys. 2002, 41, 3052–3056. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Dover Publications, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Bajt, S.; Stearns, D.G.; Kearney, P.A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. J. Appl. Phys. 2001, 90, 1017–1025. [Google Scholar] [CrossRef]
Deposition Parameters | |
---|---|
Number of period multilayers | N = 50 |
Period thickness | d = 6.97–7.07 nm |
Working gas | 99.999% Ar |
Working gas pressure | 0.133 Pa |
Background pressure | 6.4 × 10−5 Pa |
X = 47.5 mm | X = 92.5 mm | |||
---|---|---|---|---|
Layer | Thickness (nm) | Roughness (nm) | Thickness (nm) | Roughness (nm) |
Mo | 1.950 | 0.245 | 2.130 | 0.237 |
Mo-on-Si | 0.806 | 0.316 | 0.803 | 0.320 |
Si | 3.843 | 0.229 | 3.770 | 0.212 |
Si-on-Mo | 0.386 | 0.428 | 0.400 | 0.425 |
X = 47.5 mm | X = 92.5 mm | |||
---|---|---|---|---|
Layer | Thickness (nm) | Roughness (nm) | Thickness (nm) | Roughness (nm) |
Mo | 2.140 | 0.238 | 2.095 | 0.227 |
Mo-on-Si | 0.802 | 0.320 | 0.788 | 0.318 |
Si | 3.720 | 0.236 | 3.703 | 0.222 |
Si-on-Mo | 0.409 | 0.442 | 0.388 | 0.436 |
Sample | FWHM (deg) | 2theta (deg) | Crystal Size (nm) |
---|---|---|---|
Deposited with shadow mask | 4.12 | 40.515 | 2.15 |
Deposited without shadow mask | 4.08 | 40.515 | 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, Z.; Song, H.; Huang, Q.; Huo, T.; Zhou, H.; Qi, R.; Zhang, Z.; Wang, Z. Comparative Study on Microstructure of Mo/Si Multilayers Deposited on Large Curved Mirror with and without the Shadow Mask. Micromachines 2023, 14, 526. https://doi.org/10.3390/mi14030526
Liu X, Zhang Z, Song H, Huang Q, Huo T, Zhou H, Qi R, Zhang Z, Wang Z. Comparative Study on Microstructure of Mo/Si Multilayers Deposited on Large Curved Mirror with and without the Shadow Mask. Micromachines. 2023; 14(3):526. https://doi.org/10.3390/mi14030526
Chicago/Turabian StyleLiu, Xiangyue, Zhe Zhang, Hongxuan Song, Qiushi Huang, Tonglin Huo, Hongjun Zhou, Runze Qi, Zhong Zhang, and Zhanshan Wang. 2023. "Comparative Study on Microstructure of Mo/Si Multilayers Deposited on Large Curved Mirror with and without the Shadow Mask" Micromachines 14, no. 3: 526. https://doi.org/10.3390/mi14030526
APA StyleLiu, X., Zhang, Z., Song, H., Huang, Q., Huo, T., Zhou, H., Qi, R., Zhang, Z., & Wang, Z. (2023). Comparative Study on Microstructure of Mo/Si Multilayers Deposited on Large Curved Mirror with and without the Shadow Mask. Micromachines, 14(3), 526. https://doi.org/10.3390/mi14030526