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Abstract: Machine-health-surveillance systems are gaining popularity in industrial manufacturing
systems due to the widespread availability of low-cost devices, sensors, and internet connectivity. In
this regard, artificial intelligence provides valuable assistance in the form of deep learning methods
to analyze and process big machine data. In diverse industrial applications, gears are considered
a condemning element; many contributing failures occur due to an unexpected breakdown of the
gears. In recent research, anomaly-detection and fault-diagnosis systems have been the gears’” most
contributing content. Thus, in work, we presented a smart deep learning-based system to detect
anomalies in an industrial machine. Our system used vibrational analysis methods as a deciding tool
for different machinery-maintenance decisions. We will first perform a data analysis of the gearbox
data set to analyze the data’s insights. By calculating and examining the machine’s vibration, we aim
to determine the nature and severity of the defect in the machine and hence detect the anomaly. A
gearbox’s vibration signal holds the fault’s signature in the gears, and earlier fault detection of the
gearbox is achievable by examining the vibration signal using a deep learning technique. Therefore,
we aim to propose a 6-layer autoencoder-based deep learning framework for anomaly detection and
fault analysis using a publically available data set of wind-turbine components. The gearbox fault-
diagnosis data set is utilized for experimentation, including collecting vibration attributes recorded
using SpectraQuest’s gearbox fault-diagnostics simulator. Through comprehensive experiments, we
have seen that the framework gains good results compared to others, with an overall accuracy of 91%.

Keywords: artificial intelligence; deep learning; industrial machine; anomaly detection

1. Introduction

Advancements in modern technology aim to enhance today’s industrial applications
significantly; machine systems are now evolving to become more complex and complete
critical tasks. Thus, it is necessary to monitor these systems’ conditions in order to improve
their reliability. Any rotating machine, including pumps, compressors, steam turbines,
and wind turbines, will ultimately reach a threshold of poor health conditions. One useful
approach for improving their cost-effective maintenance and reliability is to use condition-
monitoring and health-surveillance systems. These systems will aim to detect unexpected
failures, faults, and anomalies in the machines [1,2].

Monitoring and prognostics systems developed on data-driven approaches need a
sufficient amount of data, which is collected using a network of various kinds of sensors
that monitor systems performance [3]. The data set collected from different machines
through various sensors and devices normally has high dimensionality and sometimes
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also possesses undesirable interference and noise. The high-dimensional data set has an
immediate effect on the training time and on the performance precision of deep learning
methods. In order to deal with such problems, researchers mainly focus on reducing
the input data or signal dimensionality by collecting useful features that hold the health
condition information of machines.

Various techniques have been developed to achieve this goal. Some researchers used
machine learning and handcrafted feature-based methods [4,5] such as obtaining temporal
features by calculating the root mean square or peak-to-peak distance approach [6]. How-
ever, the primary features of a good-condition monitoring system and anomaly detection
enable one to accumulate valuable characteristics and use these characteristics to determine
the deteriorating state of machines by investigating the variation from the healthy (normal)
behavior . In addition, handcrafted feature engineering-based techniques need domain
details and knowledge, along with “trial and error” approaches. Nevertheless, the advent
of artificial intelligence [7] and the recent improvement of deep learning methods [8] have
transformed the feature-extraction and dimensionality-reduction methods. It is anticipated
that hidden units obtain features that will define the data by piling up the layer to assemble
deep autoencoders and decrease the number of units in the hidden layers.

Inspired by the successful results of artificial intelligence-based methods, we presented
an intelligent framework for detecting anomalies in an industrial data set in this work. We
also utilized the data-analysis method to investigate insights into the data set [9] because
the most valuable features are known instantly from the data; hence, we avoided using trial
and error methods . We presented an autoencoder-based model focusing on the data set’s
most salient features and enhancing the system’s results. Furthermore, the autoencoder
model mainly learns to match standard data points and does not contain anomalies in the
trained model. The proposed framework demonstrates its relevance in machine-condition
monitoring and anomaly-detection systems by considering it in relation to a real-world
gearbox fault diagnosis data set (https://data.openei.org/submissions /623, accessed on 20
November 2022). The benefits of the autoencoder model comprise the capability to operate
without preprocessing, feature selection, or manual-feature engineering. It does not restrict
itself to the preidentified anomalies. It has the potential to identify new anomalies. We
also demonstrate the time and feature-domain features used to teach the model to improve
a detection model’s performance . First, the vibration signals are preprocessed, and later
the training extracts features and rebuilds the signal for absolute-anomaly detection . In
summary, the main contribution of the work is presented as follows:

¢ To present a combined framework for anomaly detection and condition monitoring
using an industrial data set.

e To perform time and frequency analysis in order to gain insight of the data set through
data visualization.

¢  To develop a window-feature-based autoencoder model for anomaly detection and
condition monitoring.

*  To perform a comparative analysis of the developed model with state-of-the-art methods.

The work presented in the paper is arranged as follows: an overview of different
methods used for anomaly detection is presented in Section 2. Then, section 3 discusses
the details of the developed anomaly-detection framework. The data set used to evaluate
the framework is also presented in this section. We also discuss the time- and frequency-
based data analysis in Section 3. Furthermore, experimental results, along with evaluation
parameters, are also addressed in Section 4. Lastly, the presented work with some future
guidelines is concluded and summarized in Section 5.

2. Literature Review

Researchers studied machine learning and deep learning methods for anomaly-
detection and machine-condition monitoring systems. For example, the authors of [10] pre-
sented a time-series-based anomaly-detection system for rotatory machine fault/anomaly
detection. In data analysis, features and their generations are meaningful ideas in order


https://data.openei.org/submissions/623

Micromachines 2023, 14, 154

30f12

to perform anomaly detection. Moreover, the selected features are vital for calculating
dissimilarities in data, therefore identifying anomalies. Conventionally, feature extraction
from the time and frequency domain has been utilized for monitoring or computing the
anomalies of the machine [11].

Numerous feature-extracted methods are handled using conditions that are sensitive
to irregularities. Investigators have attempted to improve the implementation of machine-
and anomaly-detection techniques [12,13] by executing multivariate examinations while
utilizing different features jointly. Xia et al. [14] calculated 29 bearing features by utilizing
signal-processing methods [15]. Others have tried to perform this by creating components
for detailed failure patterns and completing multivariate investigations based on them. For
example, the authors of [16] made five attributes, each liable to a distinct failure method.
Nevertheless, such handcrafted extracted features are not generalizable and fail to deliver
good machine health data, specifically in unfamiliar circumstances.

Ali et al. [17] attempted to classify different bearing classes utilizing a collection of
time-frequency domain components and artificial neural networks (ANN). [18] substituted
the traditional feature extraction step by using 1-D convolutional neural networks. The
method is performed using raw motor signals. The assessment conducted on bearing fault
identification showed their approach’s superiority over conventional feature extraction
techniques. [19] used an autoencoder for feature extraction and utilized this information
for training a supervised detection model for fault classification. [20] explored various
one-class classifiers, including k-means and nearest neighbors, to classify faulty rotor bars
present in an induction motor. They figured the k-nearest neighbor approach displayed
good results among other tested techniques.

Deep learning architectures, specifical autoencoders, are successfully used to classify
anomalies and faults into distinct classes [21]. A probabilistic method for classifying
anomalies in the natural gas consumption industry is presented in [22]. Nevertheless,
the prediction approach indicates the consumption ranks utilizing different independent
attributes and does not include the temporal information. Liu et al. [23] offered a fault-
diagnosis system based on STFT and deep learning using Rolling bearing sound signals.
Autoencoders have also obtained a valuable pattern from multiple sensor data [24]. Jiang
et al. [25] presented frequency-domain-feature-based methods employing auto-encoders
and traditional classification algorithms such as support vector machines and random
forest to complete the classification job. Wang et al. [26] presented a deep-learning-based
system for fault-relevant feature extraction and fault classification.

Mao et al. [27] proposed a novel autoencoder for fault recognition. Hoang et al. [28]
suggested a a convolutional neural network for fault detection using a vibration image of
a rolling bearing. However, the authors mainly focused on overcoming overfitting due
to training data because of the limited available dataset. The authors of [29] presented
an improved feature-based method with local binary patterns for bearing-fault diagnosis,
which requires more training.

Researchers in [30,31], presented a review of various deep learning methods [32,33]
used for the diagnosis of faults and anomalies in different machinery systems. In the
literature, various feature and deep learning-based methods are developed by researchers.
However, as discussed above, methods encounter one or several limitations: the need
for accurately labelled data sets, labour-intensive manual-feature extraction, or a failure
to integrate temporal information. In contrast, the presented artificial-based anomaly-
detection framework first utilized data analysis to give insight into the data set. Finally, the
autoencoder-based deep learning model trained over the vibration signals autonomously
monitors the health condition of machines and identifies anomaly detection .

3. Materials and Methods

This work introduced an automated artificial-based framework using deep learning
to detect anomalies in industrial machine data. In the presented work, we first perform
simple data analysis in order to gain insight into the data set. Next, we perform a time- and
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frequency-domain analysis of the vibrational data set and then propose a deep-learning-
based autoencoder model for detection purposes. In the following subsections, the details of
the data set, data analysis, and developed deep autoencoder model are provided in detail.

3.1. Gearbox Vibrational Data set

The vibration signal data set utilized in this study is gathered from the (https://data.
openei.org/submissions/623, accessed on 20 November 2022). It has been recorded with
the help of four vibration sensors a1, ay, a3, a4 placed in four different directions. The data
set has been recorded under load variation from ‘0’ to ‘90" percent. It includes the tooth data
set in two scenarios: (1) healthy condition & and (2) broken tooth condition b. There are 20
files in total, 10 for the healthy gearbox and 10 for broken one. The data set is collocated by
implementing SpectraQuest’s gearbox fault-diagnostics simulator. The gearbox device has
configurations with various options and working behaviors. Based on these configurations,
condition monitoring, gearbox working behavior, and vibration data is studied. The total
number of samples for both healthy- and broken-tooth conditions for load 0 to 90 is shown
in Figure 1. There are total four files for each sensor, and the files have roughly the same
number of samples (85 k-120 k samples per file).

state
N b
b

load
& 8 3 8 8 &8 8858 8B o

60000 80000 100000 120000

count

0 20000 40000

Figure 1. Total number of samples (healthy-condition / and broken-tooth condition b) in the data set.

3.2. Time- and Frequency-Domain Analysis

In this section, we performed a time- and frequency-domain analysis of the data set
in order to gain insight it. Through deep analysis, we understand the patterns of all four
vibration sensors in both scenarios. First, in Figure 2, we have shown histograms of the four
vibration signals. Each plot shows the histogram for each of the four sensor accelerations
a1,ap,a3,a4. It can be seen that all four sensors” histogram amplitude values are different.
In Figure 3, we have shown the time-domain analysis of all four sensors in both good- and
broken-tooth scenarios. The upper row shows the plot for sensors a; and a;, while the
second row shows plots for sensors a3 and a4. It looks like there is a difference in amplitude
for the sensor readings between the healthy gearbox and the one with the broken tooth .
The difference between the amplitude values of all the sensors can be clearly seen against
the time readings.
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Figure 2. Histogram of all four sensors ay,a, a3, a4.
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Figure 3. Time-domain analysis of each individual sensor e.g., a1, a4, a3, a4.

In Figure 4, we have shown the time-domain analysis of two scenarios: the good- and
broken-tooth scenario. It looks like there is a difference in amplitude between the sensor
readings between the healthy gearbox and the one with the broken tooth. For load value 0,
the machine shows some minor amplitude vibrations, which means that the machine is not
working accurately, while for load 90, in a good or healthy state, the machine shows high
amplitude vibrations, meaning that the machine is properly working without any anomaly.
We also analyzed the combined plot of all four sensors in Figure 5 to show the readings’
distribution and compare the healthy and broken gearboxes for the same load and sensor.
It can be seen that the values of all sensors are different.

state = b | load = 0 state = b | load = 90

R

state = h | load = 0 state = h | load = %0

T - v r T - T v v T - T
0 20000 40000 60000 80000 100000 L] 20000 40000 60000 80000 100000
reading reading

Figure 4. Time-domain analysis of different scenarios for load 0 and 90.
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Figure 5. Time-domain analysis of all sensors a1, a3, a3, a4.

Looking at the vibration data across time is useful. However, as seen from the above
figures, vibrations are occurring at different frequencies—this is very difficult to identify
from the time-based analysis. Thus, the frequency analysis of the data may yield some
more tangible features. In Figure 6, we have shown a frequency-domain analysis based
on Fourier transforms to convert signal data (e.g., vibration readings) into its component
frequencies. It can be seen that there is fluctuation at some points in the data (we can see
some peaks).

35000
30000
25000
20000

15000

Signal strength

10000

5000

] 2 4 6 8 10 12 14
Frequency (Hz)

Figure 6. Frequency-domain analysis for all counted samples.

We plotted a power spectral density to clearly see these peak values as shown in
Figure 7. At each load, compare the healthy and broken gearbox signals for each sensor.
We can also correlate the power values for each frequency between the healthy and broken
gearboxes to see how well they line up. The correlation between the two spectra is shown
in the plot’s title for the sensors, and the signal power at the higher frequencies is much
lower in the readings from the gearbox with the broken tooth . This pattern is visible across
all loads. In Figures 8 and 9, we have shown the power spectral analysis of all sensors using
frequency values of the data samples for load ‘0" and "90’. From the frequency spectrum
the changes in the correlation values can be seen for load "90".
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Figure 7. Power-spectral-density graph plotted using frequency values of the data samples.
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Figure 8. Power-spectral-density graph of all four sensors at load 0.
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Figure 9. Power-spectral-density graph of all four sensors at load 90.

3.3. Developed Autoencoder Model for Anomaly Detection

We proposed a 6-layer autoencoder-based deep learning model for anomaly detection
in this work. The developed model comprises of encoder and a decoder steps. The encoder
takes high-dimensional input data and translates it into low-dimensional data. On the
other side, the decoder network receives the input from the encoder, that is, the output
from the coder. The decoder’s goal is to rebuild the information that is provided as input
data. The size of the output in this network is also larger than the size of the input. The
overall architecture of the proposed model is illustrated in Figure 10. As discussed, that
model receives high-dimensional information data and squeezes it down to the latent-space
presentation in the bottleneck hidden layer. At the same time, the decoder accepts the latent
presentation of the information as an input to rebuild the actual input data.

Input - Ideally they are identical. - R.c:nﬂ;::lchd
x ~ x'
Bottleneck!
Encoder Decoder ,
x > > - -
9é fo X
An compressed low dimensional
representation of the input.

Figure 10. Illustration of autoencoder model architecture.

The encoder mainly encodes the input using the hidden layer to decrease the di-
mensionality of nonlinear and linear data; therefore, it is more powerful than principal
component analysis. The model comprises two main functions: the encoder g(.) and a
decoder f(.); each function is parameterized using ¢ and theta values, respectively. The
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low-dimensional value of the code is retained for input x through the bottleneck layers z,
which is provided as

Z = 8g(x) @
and the reconstructed input value is estimated as;
X' = fo(8p(x)) )

In the above equations, 6, and ¢ are jointly learned to output, and a reconstructed data
sample the same as the actual size of the input is obtained as;

x = fo(8p(x)) ®)

In other words, the equivalence function is learned. Different metrics are applied
to quantify the discrepancy between two feature vectors, such as cross-entropy, which is
applied when the activation function is sigmoid or a simple mean square root error (MSE)
loss. The loss function for the autoencoder is estimated as follows:

L(autoencoder)(ef (P) = 1 Z = 1n(x(i) — fo (g¢(x(i)))2 4)

n =
1

Hence, the autoencoder learns through the equivalence function; we might face the
threat of overfitting as there are more network parameters than the number of input data
attributes . Thus, to overcome overfitting and enhance the robustness and performance
of the model, we used the denoising autoencoder approach as shown in Figure 11. This
approach is proposed as a modification to the autoencoder model. The input is partly
corrupted by adding some noisy values or hiding some values of the input vector in a
stochastic way;

= My(21) x) ()

In the above equation, Mp defines the mapping from the actual data samples to the
noisy ones. The final loss function is defined as follows:

1 . .
L(denoising,autoencoder) (9’ ¢) = P Z = 1n(x(l) —fo (g¢(x(l)))2 (6)

i

In a high-dimension data set, anomalies are detected using the above discussed model.
During the training, the normal input values are given to the encoder. The bottleneck layers
use the latent representation of the actual input data. The decoder uses the output of the
bottleneck layers to reconstruct the actual input data.

”””””””””””””””””””””””””” Ideally they are identical. -~y

- : x X v
Original Partially Reconstructed
input destroyed input
input
Bottleneck!

Encoder Decoder ’
9¢ Jo x

An compressed low dimensional
representation of the input. L |

0000000 *
OROORO
|OROORRO |« £

Figure 11. Illustration of denoising autoencoder model architecture.
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4. Results

The results of the above-discussed model are presented in this section. We trained the
above model for 140 epochs. Firstly, we discussed training and validation loss observations
as shown in Figure 12. In the figure, the x-axis shows the total number of epochs, while the
y-axis shows loss values. It can be seen that the loss value decreases after the 20th epoch.
The minimum value of the training loss is 0.01, while the validation loss is 0.07.

- Training Loss
0.35 Validation Loss

0.30

0.25

0 2 4 6 B 100 120 140
Figure 12. Training and validation loss.

To estimate the reconstruction loss on the test data set, we anticipate the test data set
values and compute the mean square error between the test data and the reconstructed test
data. To calculate the reconstruction loss on test data, predict the test data and calculate the
mean square error between the test data and the reconstructed test data. We plotted the
reconstruction loss against the sample index. The results shown in Figure 13 are plotted for
normal test data. It can be seen that the loss value is not so high for normal data set samples.

0.250 { — Input

—— Reconstruction
0.225 Error

0.200
0.175
0.150
0.125

0.100

0.075

T T T T T T T T

] 2 4 6 B 10 12 14

Figure 13. Reconstruction loss of normal data samples.

We also calculated the difference for the anomalous data set as shown in Figure 14. By
comparing both figures, it can be seen that the difference in loss values between anomalous
data sets is high . The peak value shows the detected anomalies as points highlighting the
values where the reconstruction loss is high or greater than a defined fixed threshold value.
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Figure 14. Reconstruction loss of anomalous data samples.

In order to find the threshold to fault detection, histograms are plotted for both train
loss and test loss. In Figure 15, we have shown the plot of the train-loss histogram values,
while in Figure 16, we have shown the plot of test loss histogram values.

600 +

s &8 7
5 © o

No of examples

=
5]

100 A

0
0.005 0.010 0015 0.020 0.025 0030 0.035
Tain loss

Figure 15. Histogram of train loss.

140 A

120 A

100 4

No of examples

8 8 8 8

0-
0025 0050 0075 0100 0125 0150 0175 0200 0225
Test loss

Figure 16. Histogram of test loss.

The parameter evaluation results are discussed in Table 1. The model’s overall accuracy
is 91%, the precision is 98%, and the recall value is 83%. We also compared results with other
state-of-the-art methods. These methods are performed with manual-feature engineering
and other machine learning methods. It can be seen that among all of the proposed methods,
they display excellent results.
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Table 1. Comparison results with other state-of-the-art methods.

S.NO Method Accuracy Precision Recall
1 SVM 90% 94% 80%
2 Random forest 89% 91% 78%
3 KNN 84% 90% 76%
4 ANN 90% 94% 80%
5 Proposed autoencoder 91% 98% 83%

5. Conclusions

In this paper, we presented an artificial-intelligence-assisted deep learning method
to analyze and process big machine data. We utilized vibrational analysis methods as
a deciding tool for different machinery-maintenance decisions. We will first perform a
data analysis of the gearbox data set to analyze the data’s insights. By calculating and
examining the machine’s vibration, we determine the nature and severity of the defect
in the machine and hence detect the anomaly. Our proposed model is based on a 6-layer
autoencoder-based deep learning framework, which is used for the anomaly detection and
fault analysis of wind-turbine components. The gearbox fault-diagnosis data set is utilized
for experimentation; it includes the sets of vibration attributes recorded by SpectraQuest’s
gearbox fault-diagnostics simulator. Through comprehensive experiments, we have seen
that the framework achieves better results than other methods. The proposed method
displayed excellent results, with an overall accuracy of 91%. In the future, we aim to extend
this work to other deep learning models with different industrial benchmark data sets.
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