Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope
Abstract
:1. Introduction
2. Design Methods
2.1. Design Specifications
2.2. Optimization Process
3. Design Results
3.1. Zoom Lens Design Results
3.2. Analysis of the Main Ray Angle of the Image Square
3.3. Image Quality
4. Tolerance Analysis
4.1. Tolerance Analysis Process
4.2. Tolerance Analysis Results
4.3. Zoom Lens Resolution Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waye, J.D. The development of the swallowable video capsule (M2A). Gastrointest. Endosc. 2000, 52, 817–819. [Google Scholar]
- RF Co., Ltd. RF SYSTEM Lab. Available online: http://rfsystemlab.com/en/sayaka/index.html (accessed on 2 April 2022).
- Available online: http://medical.olympusamerica.com/products/endocapsule (accessed on 2 April 2022).
- Intromedic Co., Ltd. Available online: http://www.intromedic.com/eng/sub_products_2.html (accessed on 5 May 2022).
- Jinshan Technology Group Co., Ltd. OMOM Capsule Endoscopy. Available online: http://english.jinshangroup.com/capsuleendoscopy.html (accessed on 5 May 2022).
- Ankon Technologies Co., Ltd. NaviCam Capsule Endoscopy. Available online: http://www.ankoninc.com.cn/ (accessed on 5 April 2022).
- Mang, O.-Y.; Huang, S.W.; Chen, Y.L.; Lee, H.H.; Weng, P.K. Design of wide-angle lenses for wireless capsule endoscopes. Opt. Eng. 2007, 46, 103002. [Google Scholar] [CrossRef]
- Mang, O.-Y.; Huang, S.W.; Chen, Y.L.; Lin, C.H.; Lin, T.Y.; Kuo, Y.T. Distortion improvement of capsule endoscope image. Proc. SPIE 2007, 6430, 643018. [Google Scholar]
- Mang, O.-Y.; Jeng, W.-D. Design and analysis of radial imaging capsule endoscope (RICE) system. Opt. Express 2011, 19, 4369–4383. [Google Scholar]
- Sheu, M.J.; Chiang, C.W.; Sun, W.S.; Wang, J.J.; Pan, J.W. Dual view capsule endoscopic lens design. Opt. Express 2015, 23, 8565–8575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.W.; Chung, S.Y.; Wang, J.J.; Lin, Y.M.; Hsu, M.J.; Feng, I.C. Lens System of Capsule Endoscope with Dual-View. T.W. Patent I474040, 21 February 2015. [Google Scholar]
- Zhang, W.; Jin, Y.T.; Guo, X.; Su, J.H.; You, S.P. Design of an autofocus capsule endoscope system and the corresponding 3D reconstruction algorithm. J. Opt. Soc. Am. A 2016, 33, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Kim, D.; Kwon, H.S. Compact wide-angle capsule endoscopic lens design. Appl. Opt. 2020, 59, 3595–3600. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chang, S.; Kwon, H.-S. Wide Field-of-view, high-resolution plastic lens design with low f-number for disposable endoscopy. Photonics 2021, 8, 89. [Google Scholar] [CrossRef]
- Given Imaging. PillCam® Capsule Endoscopy, Appendix A5, 179–185. Available online: http://www-givenimaging-com/en-us/Innovative-Solutions (accessed on 5 May 2022).
- Baba, T. Imaging Lens System and Capsule Endoscope. U.S. Patent 7,796,342, 14 September 2010. [Google Scholar]
- Shannon, R.R. Tolerancing Technique in Handbook of Optics I; Chapter 36; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Olympus Corporation. Capsule Endoscope and Capsule Endoscope System. US Patent 20050049461A1, 3 March 2005. [Google Scholar]
- Olympus Corporation. Magnetic Actuator, Magnetic Actuator Operating Method, and Capsule Endoscope Using the Same. US Patent 8084898 B2, 27 December 2011. [Google Scholar]
- Tencent Technology Company Limited. Endoscope Image Processing Method and Apparatus, and Electronic Device and Storage Medium. EP 4016451 A1, 22 June 2022. [Google Scholar]
- Fujifilm Corporation. Image Processing Device, Endoscope System, Image Processing Method, and Program. US Patent 20200305698 A1, 1 October 2020. [Google Scholar]
Surface No. | Surface Type | Radius (mm) | Thickness (mm) | Material | Full Aperture (mm) |
---|---|---|---|---|---|
Object | Sphere | 15 | 10 | ||
1 | Sphere | −39.8878 | 0.8000 | NLAK34_SCHOTT | 6.0000 |
2 | Sphere | 2.2953 | 1.4238 | 3.8045 | |
3 | Asphere | 1.6832 | 1.2000 | PEIO | 3.4216 |
4 | Asphere | 1.5473 | d4 | 2.4192 | |
Stop | Sphere | Infinity | 0.1000 | 1.0647 | |
6 | Asphere | 1.9349 | 1.3360 | POLEFINH | 1.2329 |
7 | Asphere | −6.0669 | d7 | 1.5288 | |
8 | Asphere | 2.6530 | 1.4431 | POLEFINH | 2.3434 |
9 | Asphere | 67.8418 | d9 | 2.3469 | |
10 | Sphere | Infinity | 0.8000 | NBK7_SCHOTT | 2.2278 |
11 | Sphere | Infinity | 0.1000 | 2.1147 | |
Image | Sphere | Infinity | 0.000 | 2.1109 |
Different Magnifications and Field of Views (FOV) | Maximum Optical Distortion |
---|---|
M = −0.0845 (FOV = 143°) | −14.89% |
M = −0.0984 (FOV = 114°) | −8.50% |
M = −0.1150 (FOV = 93°) | −4.64% |
M = −0.1317 (FOV = 79°) | −2.49% |
M = −0.1482 (FOV = 69°) | −1.24% |
M = −0.1690 (FOV = 60°) | 1.45% |
Video Distortion | ||
---|---|---|
Zoom Positions | Horizontal Video Distortion | Vertical Video Distortion |
Zoom 1 (FOV = 143°) | 3.31% | 8.19% |
Zoom 2 (FOV = 114°) | 1.98% | 4.98% |
Zoom 3 (FOV = 93°) | 1.30% | 3.08% |
Zoom 4 (FOV = 79°) | 0.98% | 2.07% |
Zoom 5 (FOV = 69°) | 0.83% | 1.53% |
Zoom 6 (FOV = 60°) | 0.696% | 0.996% |
Different Zoom Positions and FOVs | Maximum Value of Lateral Color (Red Curve) | Maximum Value of Lateral Color (Green Curve) |
---|---|---|
M = −0.0845 (FOV = 143°) | 0.001506 mm | −0.00081 mm |
M = −0.0984 (FOV = 114°) | −0.001396 mm | 0.000839 mm |
M = −0.1150 (FOV = 93°) | −0.001397 mm | 0.000627 mm |
M = −0.1317 (FOV = 79°) | −0.001368 mm | 0.000518 mm |
M = −0.1482 (FOV = 69°) | −0.001311 mm | 0.000440 mm |
M = −0.1690 (FOV = 60°) | −0.001400 mm | 0.000302 mm |
Different Zoom Positions | Minimum Value of the Design Plus MTF Tolerance |
---|---|
M = −0.0845 | 0.3176 |
M = −0.0984 | 0.3154 |
M = −0.1150 | 0.3838 |
M = −0.1317 | 0.3234 |
M = −0.1482 | 0.3948 |
M = −0.1690 | 0.3428 |
Zoom Positions | MTF Value | Spatial Frequency | Resolution Width of the Image Side | Photographic Area (mm2) |
---|---|---|---|---|
Zoom 1 | 0.3013 | 157 lp/mm | 3.185 µm | 21.775 × 12.308 |
Zoom 2 | 0.3019 | 152 lp/mm | 3.289 µm | 18.700 × 10.570 |
Zoom 3 | 0.3009 | 163 lp/mm | 3.067 µm | 16.001 × 9.044 |
Zoom 4 | 0.3003 | 140 lp/mm | 3.571 µm | 13.971 × 7.897 |
Zoom 5 | 0.3001 | 154 lp/mm | 3.247 µm | 12.416 × 7.018 |
Zoom 6 | 0.3001 | 154 lp/mm | 3.650 µm | 10.887 × 6.154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.-S.; Tien, C.-L.; Chen, P.-Y. Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope. Micromachines 2022, 13, 1814. https://doi.org/10.3390/mi13111814
Sun W-S, Tien C-L, Chen P-Y. Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope. Micromachines. 2022; 13(11):1814. https://doi.org/10.3390/mi13111814
Chicago/Turabian StyleSun, Wen-Shing, Chuen-Lin Tien, and Ping-Yi Chen. 2022. "Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope" Micromachines 13, no. 11: 1814. https://doi.org/10.3390/mi13111814
APA StyleSun, W.-S., Tien, C.-L., & Chen, P.-Y. (2022). Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope. Micromachines, 13(11), 1814. https://doi.org/10.3390/mi13111814