The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF6/O2 Plasma Etching Conditions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerr, R.A. Global Warming Is Changing the World. Science 2007, 316, 188–190. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Nong, D.; Simshauser, P.; Nguyen, D.B. Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Appl. Energy 2021, 298, 117223. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Ali, S.; Ciacci, L.; Fishman, T.; Heeren, N.; Masanet, E.; Asghari, F.N.; Olivetti, E.; Pauliuk, S.; Tu, Q.; et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—A review. Environ. Res. Lett. 2019, 14, 043004. [Google Scholar] [CrossRef]
- Martin, H.; Buffat, R.; Bucher, D.; Hamper, J.; Raubal, M. Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study. Renew. Sustain. Energy Rev. 2022, 157, 111969. [Google Scholar] [CrossRef]
- Kobashi, T.; Choi, Y.; Hirano, Y.; Yamagata, Y.; Say, K. Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts. Appl. Energy 2022, 306, 118142. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Cuony, P.; Alexander, D.T.L.; Wurfl, I.P.; Despeisse, M.; Bugnon, G.; Boccard, M.; Söderström, T.; Hessler-Wyser, A.; Hébert, C.; Ballif, C. Silicon Filaments in Silicon Oxide for Next-Generation Photovoltaics. Adv. Mater. 2012, 24, 1182–1186. [Google Scholar] [CrossRef]
- Blakers, A.; Armour, T. Flexible silicon solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1440–1443. [Google Scholar] [CrossRef]
- Chavali, R.V.K.; De Wolf, S.; Alam, M.A. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review. Prog. Photovolt. Res. Appl. 2018, 26, 241–260. [Google Scholar] [CrossRef]
- Fang, J.; Ren, Q.; Wang, F.; Wei, C.; Yan, B.; Zhao, Y.; Zhang, X. Amorphous silicon/crystal silicon heterojunction double-junction tandem solar cell with open-circuit voltage above 1.5 V and high short-circuit current density. Sol. Energy Mater. Sol. Cells 2018, 185, 307–311. [Google Scholar] [CrossRef]
- Wang, H.-P.; Periyanagounder, D.; Li, A.-C.; He, J.-H. Fabrication of Silicon Hierarchical Structures for Solar Cell Applications. IEEE Access 2019, 7, 19395–19400. [Google Scholar] [CrossRef]
- Borselli, M.; Johnson, T.J.; Michael, C.P.; Henry, M.D.; Painter, O. Surface encapsulation for low-loss silicon photonics. Appl. Phys. Lett. 2007, 91, 131117. [Google Scholar] [CrossRef]
- Huang, A.; Lei, L.; Chen, Y.; Yu, Y.; Zhou, Y.; Liu, Y.; Yang, S.; Bao, S.; Li, R.; Jin, P. Minimizing the energy loss of perovskite solar cells with Cu+ doped NiOx processed at room temperature. Sol. Energy Mater. Sol. Cells 2018, 182, 128–135. [Google Scholar] [CrossRef]
- Manzoor, S.; Yu, Z.J.; Ali, A.; Ali, W.; Bush, K.A.; Palmstrom, A.F.; Bent, S.F.; McGehee, M.D.; Holman, Z.C. Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol. Energy Mater. Sol. Cells 2017, 173, 59–65. [Google Scholar] [CrossRef]
- Najar, A.S.; Charrier, J.; Pirasteh, P.; Sougrat, R. Ultra-low reflection porous silicon nanowires for solar cell applications. Opt. Express 2012, 20, 16861–16870. [Google Scholar] [CrossRef]
- Diao, Z.; Hirte, J.; Chen, W.; Spatz, J.P. Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance. ACS Omega 2017, 2, 5012–5018. [Google Scholar] [CrossRef]
- Chan, L.W.; Morse, D.E.; Gordon, M.J. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Bioinspir. Biomim. 2018, 13, 041001. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, B.; Xiang, Y.; Chen, T. A continuous, single-face wet texturing process for industrial multicrystalline silicon solar cells using a surfactant treated photoresist mask. Sol. Energy Mater. Sol. Cells 2018, 180, 173–183. [Google Scholar] [CrossRef]
- Iencinella, D.; Centurioni, E.; Rizzoli, R.; Zignani, F. An optimized texturing process for silicon solar cell substrates using TMAH. Sol. Energy Mater. Sol. Cells 2005, 87, 725–732. [Google Scholar] [CrossRef]
- Tommila, J.; Polojärvi, V.; Aho, A.; Tukiainen, A.; Viheriälä, J.; Salmi, J.; Schramm, A.; Kontio, J.; Turtiainen, A.; Niemi, T. Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography. Sol. Energy Mater. Sol. Cells 2010, 94, 1845–1848. [Google Scholar] [CrossRef]
- Dottermusch, S.; Schmager, R.; Klampaftis, E.; Paetel, S.; Kiowski, O.; Ding, K.; Richards, B.S.; Paetzold, U.W. Micro-cone textures for improved light in-coupling and retroreflection-inspired light trapping at the front surface of solar modules. Prog. Photovolt. Res. Appl. 2019, 27, 593–602. [Google Scholar] [CrossRef]
- Gonzalez, F.L.; Chan, L.; Berry, A.; Morse, D.E.; Gordon, M.J. Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications. J. Vac. Sci. Technol. B 2014, 32, 051213. [Google Scholar] [CrossRef]
- Yu, X.; Yasunaga, Y.; Goto, K.; Liu, D.; Ono, S. Profile control of femtosecond laser-fabricated moth-eye structures on Si substrate. Opt. Lasers Eng. 2021, 142, 106584. [Google Scholar] [CrossRef]
- Chan, L.; Ghoshal, A.; De Cuir, E.A., Jr.; Chen, Y.P.; Morse, D.E.; Gordon, M.J. Fabrication and optical behavior of graded-index, moth-eye antireflective structures in CdTe. J. Vac. Sci. Technol. B 2017, 35, 011201. [Google Scholar] [CrossRef]
- Chen, Q.; Hubbard, G.; Shields, P.; Liu, C.; Allsopp, D.W.E.; Wang, W.N.; Abbott, S. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 2009, 94, 263118. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.; Zhao, J.; Zhao, J.; Zhu, Y.; Yang, J.; Yang, F. Batch Fabrication of Silicon Nanometer Tip Using Isotropic Inductively Coupled Plasma Etching. Micromachines 2020, 11, 638. [Google Scholar] [CrossRef]
- Lim, S.; Um, D.-S.; Ha, M.; Zhang, Q.; Lee, Y.; Lin, Y.; Fan, Z.; Ko, H. Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Res. 2017, 10, 22–36. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Yamamoto, T. Fabrication of an Anti-Reflective and Super-Hydrophobic Structure by Vacuum Ultraviolet Light-Assisted Bonding and Nanoscale Pattern Transfer. Micromachines 2018, 9, 186. [Google Scholar] [CrossRef]
- Geyer, F.; D’Acunzi, M.; Sharifi-Aghili, A.; Saal, A.; Gao, N.; Kaltbeitzel, A.; Sloot, T.-F.; Berger, R.; Butt, H.-J.; Vollmer, D. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 2020, 6, eaaw9727. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, X.; Wu, J.; Jiang, C.; Shen, J.; Cooper, M.A.; Zheng, X.; Liu, Y.; Yang, Z.; Wu, D. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sci. Rep. 2018, 8, 5438. [Google Scholar] [CrossRef]
- Chen, Q.; Fang, J.; Ji, H.-F.; Varahramyan, K. Fabrication of SiO2 Microcantilever Using Isotropic Etching With ICP. IEEE Sens. J. 2007, 7, 1632–1638. [Google Scholar] [CrossRef]
- Lehmann, H.W.; Widmer, R. Dry etching for pattern transfer. J. Vac. Sci. Technol. 1980, 17, 1177–1183. [Google Scholar] [CrossRef]
- Jansen, H.; Gardeniers, H.; De Boer, M.; Elwenspoek, M.; Fluitman, J. A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng. 1996, 6, 14–28. [Google Scholar] [CrossRef]
- Jansen, H.V.; De Boer, M.J.; Ma, K.; Gironès, M.; Unnikrishnan, S.; Louwerse, M.C.; Elwenspoek, M.C. Black silicon method XI: Oxygen pulses in SF6 plasma. J. Micromech. Microeng. 2010, 20, 075027. [Google Scholar] [CrossRef]
- Dagostino, R.; Flamm, D.L. Plasma etching of Si and SiO2 in SF6-O2 Mixtures. J. Appl. Phys. 1981, 52, 162. [Google Scholar] [CrossRef]
- Saloum, S.; Zrir, M.A.; Alkhaled, B.; Shaker, S.A. Silicon Nanostructuring Using SF6/O2 Downstram Plasma Etching: Morphological, Optical and Sensing Properties. Mater. Res. 2018, 21, e20171082. [Google Scholar] [CrossRef]
- Agarwal, R.; Samson, S.; Bhansali, S. Fabrication of vertical mirrors using plasma etch and KOH:IPA polishing. J. Micromech. Microeng. 2007, 17, 26. [Google Scholar] [CrossRef]
- Cho, C.; You, K.; Kim, S.; Lee, Y.; Lee, J.; You, S. Characterization of SiO2 Etching Profiles in Pulse-Modulated Capacitively Coupled Plasmas. Materials 2021, 14, 5036. [Google Scholar] [CrossRef]
- Ahadi, A.M.; Trottenberg, T.; Rehders, S.; Strunskus, T.; Kersten, H.; Faupel, F. Characterization of a radio frequency hollow electrode discharge at low gas pressures. Phys. Plasmas 2015, 22, 083513. [Google Scholar] [CrossRef]
- Li, X.; Ling, L.; Hua, X.F.; Oehrlein, G.S.; Wang, Y.C.; Vasenkov, A.V.; Kushner, M.J. Properties of C4F8 inductively coupled plasmas. l. Studies of Ar/c-C4F8 magnetically confined plasmas for etching of SiO2. J. Vac. Sci. Technol. A 2004, 22, 500. [Google Scholar] [CrossRef]
- Um, D.S.; Kim, D.P.; Woo, J.C.; Kim, C.I.; Lee, S.K.; Jung, T.W.; Moon, S.C. Dry etching of CoFe films using a CH4/Ar inductively coupled plasma for magnetic random access memory application. J. Vac. Sci. Technol. A 2009, 27, 818. [Google Scholar] [CrossRef]
- Chu, P.; Qin, S.; Chan, C.; Cheung, N.; Ko, P. Instrumental and process considerations for the fabrication of silicon-on-insulators (SOI) structures by plasma immersion ion implantation. IEEE Trans. Plasma Sci. 1998, 26, 79–84. [Google Scholar] [CrossRef][Green Version]
- Yan, S.; Kamal, H.; Amundson, J.; Hershkowitz, N. Use of emissive probes in high pressure plasma. Rev. Sci. Instrum. 1996, 67, 4130–4137. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, J.-C.; Um, D.-S. The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF6/O2 Plasma Etching Conditions. Micromachines 2022, 13, 1556. https://doi.org/10.3390/mi13101556
Woo J-C, Um D-S. The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF6/O2 Plasma Etching Conditions. Micromachines. 2022; 13(10):1556. https://doi.org/10.3390/mi13101556
Chicago/Turabian StyleWoo, Jong-Chang, and Doo-Seung Um. 2022. "The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF6/O2 Plasma Etching Conditions" Micromachines 13, no. 10: 1556. https://doi.org/10.3390/mi13101556
APA StyleWoo, J.-C., & Um, D.-S. (2022). The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF6/O2 Plasma Etching Conditions. Micromachines, 13(10), 1556. https://doi.org/10.3390/mi13101556