A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. PVDF Ultrasonic Sensor
2.2. Electronic Interface
2.3. Characterization Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraden, J. Handbook of Modern Sensors; Springer Int. Pub.: Cham, Switzerland, 2016; pp. 1–11. [Google Scholar] [CrossRef]
- Sheingold, D. Transducer Interfacing Handbook; Analog Devices, Inc.: Norwood, MA, USA, 1980; pp. 1–30. [Google Scholar]
- Blalock, B.J.; Li, H.W.; Allen, P.E.; Jackson, S.A. Body-driving as a low-voltage analog design technique for CMOS technology. In Proceedings of the 2000 Southwest Symposium on Mixed-Signal Design (Cat. No.00EX390), San Diego, CA, USA, 27–29 February 2000; pp. 113–118. [Google Scholar] [CrossRef]
- Rajput, S.S.; Jamuar, S.S. Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2002, 2, 24–42. [Google Scholar] [CrossRef]
- Yan, S.; Sanchez-Sinencio, E. Low voltage analog circuit design techniques: A tutorial. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences; IEICE: Tokyo, Japan, 2000; Volume E83-A, pp. 179–196. [Google Scholar]
- Fayomi, C.J.B.; Sawan, M.; Roberts, G.W. Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: A tutorial. Analog Integr. Circuits Signal Process. 2004, 39, 21–38. [Google Scholar] [CrossRef]
- Suárez, P.; Iglesias, A.; Gálvez, A. Make robots be bats: Specializing robotic swarms to the Bat algorithm. Swarm Evolut. Comput. 2019, 44, 113–129. [Google Scholar] [CrossRef]
- Li, M.; Hayward, G. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing. Sensors 2012, 12, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.S.; Grimaldi, D.; Paolino, D.; Pullano, S.A. Low-frequency ultrasound in medicine: An in vivo evaluation. IEEE Trans. Instrum. Meas. 2012, 61, 1658–1663. [Google Scholar] [CrossRef]
- Pullano, S.A.; Bianco, M.G.; Critello, D.C.; Menniti, M.; La Gatta, A.; Fiorillo, A.S. A Recursive algorithm for indoor positioning using pulse-echo ultrasonic signals. Sensors 2020, 20, 5042. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
- Akdogan, E.K.; Allahverdi, M.; Safari, A. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746–775. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Critello, C.D. Spiral—shaped biologically—inspired ultrasonic sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 635–642. [Google Scholar] [CrossRef]
- Chirtoc, M.; Bentefour, E.H.; Antoniow, J.S.; Glorieux, C.; Thoen, J.; Delenclos, S.; Sahraoui, A.H.; Longuemart, S.; Kolinsky, C.; Buisine, J.M. Current mode versus voltage mode measurement of signals from pyroelectric sensors. Rev. Sci. Instrum. 2003, 74, 648–650. [Google Scholar] [CrossRef]
- Čajka, J.; Vrba, K. The voltage conveyor may have in fact found its way into circuit theory. AEU Int. J. Electron. Commun. 2004, 58, 244–248. [Google Scholar] [CrossRef]
- Svoboda, J.A. Current conveyors, operational amplifiers and nullors. IEE Proc. G Circuits Devices Syst. 1989, 136, 317–322. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. An overview on the second generation voltage conveyor: Features, design and applications. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 547–551. [Google Scholar] [CrossRef]
- Tamura, M.; Yamaguchi, T.; Oyaba, T.; Yoshimi, T. Electroacoustic transducers with piezoelectric high polymer films. J. Audio Eng. Soc. 1975, 23, 21–26. [Google Scholar]
- Schoenwald, J.S.; Martin, J.F. PVF2 transducers for acoustic ranging and imaging in air. In Proceedings of the Ultrasonic Symposium, Atlanta, GA, USA, 31 October–2 November 1983; pp. 577–580. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Allotta, B.; Dario, P.; Francesconi, R. An ultrasonic range sensor array for a robotic fingertip. Sens. Actuators 1989, 17, 103–106. [Google Scholar] [CrossRef]
- Measurement Specialties Application Specification; TE Connectivity’s (TE) Measurement Specialties: Berwyn, PA, USA, 2001.
- Chen, J.; Zhao, J.; Lin, L.; Sun, X. Truncated conical PVDF film transducer for air ultrasound. IEEE Sens. J. 2019, 19, 8618–8625. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Ultrasonic transducers shaped in Archimedean and Fibonacci spiral: A comparison. Sensors 2020, 20, 2800. [Google Scholar] [CrossRef]
- Fiorillo, A.S. Noise analysis in air-coupled PVDF ultrasonic sensors. IEEE Trans. Ultrasonic Ferroelectr. Freq. Control 2000, 47, 1432–1437. [Google Scholar] [CrossRef]
- Brown, L.F.; Carlson, D.L. Ultrasound transducer models for piezoelectric polymer films. IEEE Trans. Ultrasonic Ferroelectr. Freq. Contr. 1989, 36, 313–318. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Vollero, L.; Zompanti, A.; Sabatini, A.; Kumar, N.; Pini, I.; Quiros Solano, W.F.; Sarro, L.; D’Amico, A. Advances in the electronics for cyclic voltammetry: The case of gas detection by using microfabricated electrodes. Front. Chem. 2018, 6. [Google Scholar] [CrossRef]
- Mochizuki, K.; Masuda, T.; Watanabe, K. An interface circuit for high-accuracy signal processing of differential-capacitance transducers. In Proceedings of the Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science!) Joint Conference—1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec, Brussels, Belgium, 4–6 June 1996; Volume 2, pp. 1200–1204. [Google Scholar] [CrossRef]
- Bonfini, G.; Brogna, A.S.; Garbossa, C.; Colombini, L.; Bacci, M.; Chicca, S.; Bigongiari, F.; Guerrini, N.C.; Ferri, G. An ultralow-power switched opamp-based 10-B integrated ADC for implantable biomedical applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 174–177. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Zompanti, A.; Parente, F.R.; Ferri, G.; D’Amico, A. Design and development of an electronic interface for gas detection and exhaled breath analysis in liquids. IEEE Sens. J. 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Harb, A.; Hu, Y.; Sawan, M.; Abdelkerim, A.; Elhilali, M.M. Low-power CMOS interface for recording and processing very low amplitude signals. Analog Integr. Circuits Signal Process. 2004, 39, 39–54. [Google Scholar] [CrossRef]
- Crescentini, M.; Bennati, M.; Carminati, M.; Tartagni, M. Noise lmits of CMOS current interfaces for biosensors: A review. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 278–292. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. Traditional Op-Amp and new VCII: A comparison on analog circuits applications. AEU Int. J. Electron. Commun. 2019, 110, 152845. [Google Scholar] [CrossRef]
- Ferri, G.; Guerrini, N. Low-Voltage Low-Power CMOS Current Conveyors; Springer: Berlin/Heidelberg, Germany, 2003; Available online: https://www.springer.com/gp/book/9781402074868 (accessed on 25 November 2020).
- Safari, L.; Minaei, S. A novel super transistor-based high-performance CCII and its applications. Elektron. IR Elektrotech. 2018, 24, 50–57. [Google Scholar] [CrossRef]
- Nunez, J.; Tlelo, E.; Ramirez, C.; Jimenez, J. CCII+ Based on QFGMOS for Implementing Chua s Chaotic Oscillator. IEEE Lat. Am. Trans. 2015, 13, 2865–2870. [Google Scholar] [CrossRef]
- Wilson, B. Tutorial review Trends in current conveyor and current-mode amplifier design. Int. J. Electron. 1992, 73, 573–583. [Google Scholar] [CrossRef]
- Saad, R.; Soliman, A.M. Generation modeling and analysis of CCII-Based gyrators using the generalized symbolic framework for linear active circuits. Int. J. Circuit Theory Appl. 2008, 36, 289–309. [Google Scholar] [CrossRef]
- Yuce, E.; Minaei, S. Realization of arbitrary current transfer functions based on commercially available CCII + s. Int. J. Circuit Theory Appl. 2014, 42, 659–670. [Google Scholar] [CrossRef]
- Barile, G.; Ferri, G.; Safari, L.; Stornelli, V. A new high drive class-AB FVF-based second generation voltage conveyor. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 405–409. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 2019, 8, 765. [Google Scholar] [CrossRef]
- Barile, G.; Safari, L.; Ferri, G.; Stornelli, V. A VCII-based stray insensitive analog interface for differential capacitance sensors. Sensors 2019, 19, 3545. [Google Scholar] [CrossRef] [PubMed]
- Pantoli, L.; Barile, G.; Leoni, A.; Muttillo, M.; Stornelli, V. Electronic interface for lidar system and smart cities applications. J. Commun. Softw. Syst. 2019, 15, 118–125. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G.; Leoni, A. New current mode Wheatstone bridge topologies with intrinsic linearity. In Proceedings of the 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 9–12. [Google Scholar]
- Ultrasonic Sensor Application Manual; Murata Manufacturing Co. Ltd.: Kyoto, Japan, 2008; pp. 1–15.
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Bioinspired US sensor for broadband applications. Sens. Actuators A Phys. 2019, 294, 148–153. [Google Scholar] [CrossRef]
Geometry | fr (kHz) | Bandwidth (kHz) | Quality Factor | Ref. |
---|---|---|---|---|
Hemi-cylindric | 63.5 | 6.3 | ≅10 | [13] |
Cylindric | 40 | Tx (Transmission): 8 | Tx: 5 | |
Rx (Reception): 10 | Rx: 10 | [21] | ||
Cylindric | 80 | Tx: 14 | Tx: ≅10 | |
Rx: 11 | Rx: ≅7 | [21] | ||
Truncated Conical | 33 | 11 | 3 | [22] |
Sensor | Active Device | Number of Processing Stages | Filtering Stage | Gain | Bandwidth (kHz) | Power Consumption (mA) |
---|---|---|---|---|---|---|
Cylindric 40 kHz | MOS Stage | 3 | Bandpass | 31 dB | ≅100 | 30 |
Cylindric 80 kHz | Op-Amp Stage | 3 | Bandpass | 61 dB | 67 | 12 * |
This Work | VCII | 1 | None | 86 dBΩ | >103 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Fiorillo, A.S.; Barile, G.; Stornelli, V.; Ferri, G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines 2021, 12, 99. https://doi.org/10.3390/mi12020099
Pullano SA, Fiorillo AS, Barile G, Stornelli V, Ferri G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines. 2021; 12(2):99. https://doi.org/10.3390/mi12020099
Chicago/Turabian StylePullano, Salvatore A., Antonino S. Fiorillo, Gianluca Barile, Vincenzo Stornelli, and Giuseppe Ferri. 2021. "A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors" Micromachines 12, no. 2: 99. https://doi.org/10.3390/mi12020099
APA StylePullano, S. A., Fiorillo, A. S., Barile, G., Stornelli, V., & Ferri, G. (2021). A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines, 12(2), 99. https://doi.org/10.3390/mi12020099