Next Article in Journal
Extension of the Measurable Wavelength Range for a Near-Infrared Spectrometer Using a Plasmonic Au Grating on a Si Substrate
Previous Article in Journal
Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex
Previous Article in Special Issue
Hyaluronate-Functionalized Graphene for Label-Free Electrochemical Cytosensing
Open AccessArticle

Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications

1
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain
2
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain
3
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain
4
Das-Nano, Polígono Industrial Talluntxe, Calle M-10, Tajonar, 31192 Navarra, Spain
5
Departamento Ingeniería Eléctrica, Electrónica y de Comunicación, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
6
CIEMAT, Departamento de Electrónica, Avda. Complutense 40, 28040 Madrid, Spain
7
Departamento de Ciencia de Materiales, E.T.S.I de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/ Profesor Aranguren s/n, 28040 Madrid, Spain
*
Authors to whom correspondence should be addressed.
Micromachines 2019, 10(6), 402; https://doi.org/10.3390/mi10060402
Received: 24 May 2019 / Revised: 11 June 2019 / Accepted: 11 June 2019 / Published: 17 June 2019
(This article belongs to the Special Issue Graphene Nanoelectronic Devices)
New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2–3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance. View Full-Text
Keywords: graphene; transparent electrodes; silicon heterojunction solar devices graphene; transparent electrodes; silicon heterojunction solar devices
Show Figures

Graphical abstract

MDPI and ACS Style

Fernández, S.; Boscá, A.; Pedrós, J.; Inés, A.; Fernández, M.; Arnedo, I.; González, J.P.; de la Cruz, M.; Sanz, D.; Molinero, A.; Singh Fandan, R.; Pampillón, M.Á.; Calle, F.; Gandía, J.J.; Cárabe, J.; Martínez, J. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop