Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers
Abstract
:1. Introduction
2. Applications of Miniature Frequency Combs
3. Stabilization
4. Supercontinuum Generation in Integrated Waveguides
5. Requirements for Semiconductor Lasers
6. Materials for Nonlinear Processes
7. Future Outlook
Funding
Conflicts of Interest
References
- Li, H.; Balamurugan, G.; Sakib, M.; Sun, J.; Driscoll, J.; Kumar, R.; Jayatilleka, H.; Rong, H.; Jaussi, J.; Casper, B. A 112 Gb/s PAM4 transmitter with silicon photonics microring modulator and CMOS driver. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers 2019, San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Krishnamoorthy, A.V.; Ho, R.; Zheng, X.; Schwetman, H.; Lexau, J.; Koka, P.; Li, G.; Shubin, I.; Cunningham, J.E. Computer systems based on silicon photonic interconnects. Proc. IEEE 2009, 97, 1337–1361. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolova, D.; Rumley, S.; Calhoun, D.; Li, Q.; Hendry, R.; Samadi, P.; Bergman, K. Scaling silicon photonic switch fabrics for data center interconnection networks. Opt. Express 2015, 23, 1159–1175. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.Z.; Ryckeboer, E.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; De Groote, A.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photonics Res. 2015, 3, B47–B59. [Google Scholar] [CrossRef]
- Yang, W.; Conkey, D.B.; Wu, B.; Yin, D.; Hawkins, A.R.; Schmidt, H. Atomic spectroscopy on a chip. Nat. Photonics 2007, 1, 331–335. [Google Scholar] [CrossRef]
- Okawachi, Y.; Saha, K.; Levy, J.S.; Wen, Y.H.; Lipson, M.; Gaeta, A.L. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 2011, 36, 3398–3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 2015, 4, 143–164. [Google Scholar] [CrossRef]
- Jones, R.; Doussiere, P.; Driscoll, J.B.; Lin, W.; Yu, H.; Akulova, Y.; Komljenovic, T.; Bowers, J.E. Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers. IEEE Nanotechnol. Mag. 2019, 13, 17–26. [Google Scholar] [CrossRef]
- Diddams, S.A. The evolving optical frequency comb. JOSA B 2010, 27, B51–B62. [Google Scholar] [CrossRef]
- Udem, T.; Reichert, J.; Holzwarth, R.; Hänsch, T. Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser. Phys. Rev. Lett. 1999, 82, 3568–3571. [Google Scholar] [CrossRef]
- Stalnaker, J.E.; Mbele, V.; Gerginov, V.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.; Tanner, C.E. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor. Phys. Rev. A 2010, 81, 043840. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 2008, 100, 013902. [Google Scholar] [CrossRef] [PubMed]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Tombez, L.; Zhang, E.; Orcutt, J.; Kamlapurkar, S.; Green, W. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. [Google Scholar] [CrossRef]
- Li, C.H.; Benedick, A.J.; Fendel, P.; Glenday, A.G.; Kärtner, F.X.; Phillips, D.F.; Sasselov, D.; Szentgyorgyi, A.; Walsworth, R.L. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm·s−1. Nature 2008, 452, 610–612. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Knappe, S.; Shah, V.; Schwindt, P.D.D.; Hollberg, L.; Kitching, J.; Liew, L.A.; Moreland, J. A microfabricated atomic clock. Appl. Phys. Lett. 2004, 85, 1460–1462. [Google Scholar] [CrossRef] [Green Version]
- Fruehauf, H. Fast “Direct-P(Y)” GPS signal acquisition using a special portable clock. In Proceedings of the 33rd Annual Precise Time and Time Interval Meeting, Long Beach, CA, USA, 27–29 November 2001; p. 359. [Google Scholar]
- Song, M.; Long, C.M.; Wu, R.; Seo, D.; Leaird, D.E.; Weiner, A.M. Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs. IEEE Photonics Technol. Lett. 2011, 23, 1618–1620. [Google Scholar] [CrossRef]
- Delfyett, P.J.; Ozdur, I.; Hoghooghi, N.; Akbulut, M.; Davila-Rodriguez, J.; Bhooplapur, S. Advanced ultrafast technologies based on optical frequency combs. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 258–274. [Google Scholar] [CrossRef]
- Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 2014, 8, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasch, V.; Lucas, E.; Jost, J.D.; Geiselmann, M.; Kippenberg, T.J. Self-referenced photonic chip soliton Kerr frequency comb. Light. Sci. Appl. 2017, 6, e16202. [Google Scholar] [CrossRef] [PubMed]
- Okawachi, Y.; Yu, M.; Cardenas, J.; Ji, X.; Klenner, A.; Lipson, M.; Gaeta, A.L. Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. Opt. Lett. 2018, 43, 4627–4630. [Google Scholar] [CrossRef]
- Carlson, D.R.; Hickstein, D.D.; Lind, A.; Droste, S.; Westly, D.; Nader, N.; Coddington, I.; Newbury, N.R.; Srinivasan, K.; Diddams, S.A.; et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 2017, 42, 2314–2317. [Google Scholar] [CrossRef]
- Klenner, A.; Mayer, A.S.; Johnson, A.R.; Luke, K.; Lamont, M.R.; Okawachi, Y.; Lipson, M.; Gaeta, A.L.; Keller, U. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express 2016, 24, 11043–11053. [Google Scholar] [CrossRef]
- Hickstein, D.D.; Jung, H.; Carlson, D.R.; Lind, A.; Coddington, I.; Srinivasan, K.; Ycas, G.G.; Cole, D.C.; Kowligy, A.; Fredrick, C.; et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl. 2017, 8, 014025. [Google Scholar] [CrossRef]
- Yu, M.; Desiatov, B.; Okawachi, Y.; Gaeta, A.L.; Loncar, M. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 2019, 44, 1222–1225. [Google Scholar] [CrossRef]
- Delfyett, P.J.; Klee, A.; Bagnell, K.; Juodawlkis, P.; Plant, J.; Zaman, A. Exploring the limits of semiconductor-laser-based optical frequency combs. Appl. Opt. 2019, 58, D39–D49. [Google Scholar] [CrossRef] [PubMed]
- Waldburger, D.; Mayer, A.; Alfieri, C.; Nürnberg, J.; Johnson, A.; Ji, X.; Klenner, A.; Okawachi, Y.; Lipson, M.; Gaeta, A.; et al. Tightly locked optical frequency comb from a semiconductor disk laser. Opt. Express 2019, 27, 1786–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, R.B.; Plascak, M.E.; Bagnell, K.; Bhardwaj, A.; Ferrara, J.; Hoefler, G.E.; Kish, F.A.; Wu, M.C.; Delfyett, P.J. Repetition rate stabilization and optical axial mode linewidth reduction of a chip-scale MLL using regenerative multitone injection locking. J. Light. Technol. 2018, 36, 2948–2954. [Google Scholar] [CrossRef]
- Manurkar, P.; Perez, E.F.; Hickstein, D.D.; Carlson, D.R.; Chiles, J.; Westly, D.A.; Baumann, E.; Diddams, S.A.; Newbury, N.R.; Srinivasan, K.; et al. Fully self-referenced frequency comb consuming 5 Watts of electrical power. OSA Contin. 2018, 1, 274–282. [Google Scholar] [CrossRef]
- Jornod, N.; Gürel, K.; Wittwer, V.J.; Brochard, P.; Hakobyan, S.; Schilt, S.; Waldburger, D.; Keller, U.; Südmeyer, T. Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser. Optica 2017, 4, 1482–1487. [Google Scholar] [CrossRef] [Green Version]
- Spencer, D.T.; Drake, T.; Briles, T.C.; Stone, J.; Sinclair, L.C.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; Bluestone, A.; et al. An optical-frequency synthesizer using integrated photonics. Nature 2018, 557, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Obrzud, E.; Lecomte, S.; Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 2017, 11, 600–607. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, M.; Rao, A.; Delfyett, P.; Fathpour, S. Optical frequency comb generation by pulsed pumping. APL Photonics 2017, 2, 066101. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Stolen, R.H.; Gordon, J.P.; Tomlinson, W.; Haus, H.A. Raman response function of silica-core fibers. JOSA B 1989, 6, 1159–1166. [Google Scholar] [CrossRef]
- Roy, S.; Bhadra, S.K.; Agrawal, G.P. Effects of higher-order dispersion on resonant dispersive waves emitted by solitons. Opt. Lett. 2009, 34, 2072–2074. [Google Scholar] [CrossRef] [PubMed]
- Akhmediev, N.; Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 1995, 51, 2602–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yan, Y.; Yue, Y.; Lin, Q.; Painter, O.; Beausoleil, R.G.; Willner, A.E. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt. Express 2011, 19, 11584–11590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lin, Q.; Yue, Y.; Yan, Y.; Beausoleil, R.G.; Willner, A.E. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 2012, 20, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Brasch, V.; Geiselmann, M.; Herr, T.; Lihachev, G.; Pfeiffer, M.H.P.; Gorodetsky, M.L.; Kippenberg, T.J. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 2016, 351, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.É.; Malinowski, M.; Richardson, K.A.; Fathpour, S.; Wu, M.C. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. Opt. Express 2018, 26, 21358–21363. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.P. Theory of the soliton self-frequency shift. Opt. Lett. 1986, 11, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Corwin, K.L.; Newbury, N.R.; Dudley, J.M.; Coen, S.; Diddams, S.A.; Weber, K.; Windeler, R. Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 2003, 90, 113904:1–113904:4. [Google Scholar] [CrossRef]
- Newbury, N.R.; Swann, W.C. Low-noise fiber-laser frequency combs. JOSA B 2007, 24, 1756–1770. [Google Scholar] [CrossRef]
- Gordon, J.P.; Haus, H.A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 1986, 11, 665–667. [Google Scholar] [CrossRef]
- Cavalcanti, S.B.; Agrawal, G.P.; Yu, M. Noise amplification in dispersive nonlinear media. Phys. Rev. A 1995, 51, 4086–4092. [Google Scholar] [CrossRef] [PubMed]
- Newbury, N.R.; Washburn, B.; Corwin, K.L.; Windeler, R. Noise amplification during supercontinuum generation in microstructure fiber. Opt. Lett. 2003, 28, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.L.; Liu, S.; Bowers, J.E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photonics Res. 2018, 6, 468–478. [Google Scholar] [CrossRef]
- Wang, Z.; Van Gasse, K.; Moskalenko, V.; Latkowski, S.; Bente, E.; Kuyken, B.; Roelkens, G. A III-V-on-Si ultra-dense comb laser. Light. Sci. Appl. 2017, 6, e16260. [Google Scholar] [CrossRef] [PubMed]
- Droste, S.; Ycas, G.; Washburn, B.R.; Coddington, I.; Newbury, N.R. Optical frequency comb generation based on erbium fiber lasers. Nanophotonics 2016, 5, 196–213. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Deschênes, J.D.; Sonderhouse, L.; Swann, W.C.; Khader, I.H.; Baumann, E.; Newbury, N.R.; Coddington, I. Invited Article: A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 2015, 86, 081301. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Adv. Opt. Photonics 2016, 8, 465–540. [Google Scholar] [CrossRef]
- Liu, S.; Komljenovic, T.; Srinivasan, S.; Norberg, E.; Fish, G.; Bowers, J.E. Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback. Opt. Express 2018, 26, 9714–9723. [Google Scholar] [CrossRef]
- Parker, J.S.; Bhardwaj, A.; Binetti, P.R.; Hung, Y.J.; Coldren, L.A. Monolithically integrated gain-flattened ring mode-locked laser for comb-line generation. IEEE Photonics Technol. Lett. 2012, 24, 131–133. [Google Scholar] [CrossRef]
- Latkowski, S.; Moskalenko, V.; Tahvili, S.; Augustin, L.; Smit, M.; Williams, K.; Bente, E. Monolithically integrated 2.5 GHz extended cavity mode-locked ring laser with intracavity phase modulators. Opt. Lett. 2015, 40, 77–80. [Google Scholar] [CrossRef]
- Cheung, S.; Baek, J.H.; Scott, R.P.; Fontaine, N.K.; Soares, F.M.; Zhou, X.; Baney, D.M.; Yoo, S.B. 1-GHz monolithically integrated hybrid mode-locked InP laser. IEEE Photonics Technol. Lett. 2010, 22, 1793–1795. [Google Scholar] [CrossRef]
- Johnson, A.R.; Ji, X.; Lamont, M.R.; Okawachi, Y.; Lipson, M.; Gaeta, A.L. Coherent supercontinuum generation with picosecond pulses. In Proceedings of the CLEO: Science and Innovations. Optical Society of America, San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Li, F.; Li, Q.; Yuan, J.; Wai, P.K.A. Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression. Opt. Express 2014, 22, 27339–27354. [Google Scholar] [CrossRef] [PubMed]
- Resan, B.; Delfyett, P.J. Dispersion-managed breathing-mode semiconductor mode-locked ring laser: Experimental characterization and numerical simulations. IEEE J. Quantum Electron. 2004, 40, 214–221. [Google Scholar] [CrossRef]
- Takushima, Y.; Sotobayashi, H.; Grein, M.E.; Ippen, E.P.; Haus, H.A. Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes. In Proceedings of the Active and Passive Optical Components for WDM Communications IV. International Society for Optics and Photonics, Philadelphia, PA, USA, 25–28 October 2004; Volume 5595, pp. 213–228. [Google Scholar]
- Haji, M.; Hou, L.; Kelly, A.E.; Akbar, J.; Marsh, J.H.; Arnold, J.M.; Ironside, C.N. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes. Opt. Express 2012, 20, 3268–3274. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Delfyett, P.J. Dual-mode injection locking of two independent modelocked semiconductor lasers. Electron. Lett. 2004, 40, 1182–1183. [Google Scholar] [CrossRef]
- Takada, A.; Imajuku, W. Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking. IEEE Photonics Technol. Lett. 1997, 9, 1328–1330. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Ferrara, J.; Ramirez, R.B.; Plascak, M.; Hoefler, G.; Lal, V.; Kish, F.; Delfyett, P.; Wu, M. An integrated racetrack colliding-pulse mode-locked laser with pulse-picking modulator. In CLEO: Science and Innovations; Optical Society of America: Washington, DC, USA, 2017. [Google Scholar]
- Plascak, M.E.; Ramirez, R.B.; Malinowski, M.; Tremblay, J.E.; Bhardwaj, A.; Hoefler, G.C.; Fathpour, S.; Wu, M.C.; Delfyett, P.J. Progress towards full stabilization of an injection locked 10 GHz chip-scale mode-locked laser on InP. In Proceedings of the 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Tsang, H.; Liu, Y. Nonlinear optical properties of silicon waveguides. Semicond. Sci. Technol. 2008, 23, 064007. [Google Scholar] [CrossRef]
- Hsieh, I.W.; Chen, X.; Liu, X.; Dadap, J.I.; Panoiu, N.C.; Chou, C.Y.; Xia, F.; Green, W.M.; Vlasov, Y.A.; Osgood, R.M. Supercontinuum generation in silicon photonic wires. Opt. Express 2007, 15, 15242–15249. [Google Scholar] [CrossRef]
- Singh, N.; Xin, M.; Vermeulen, D.; Shtyrkova, K.; Li, N.; Callahan, P.T.; Magden, E.S.; Ruocco, A.; Fahrenkopf, N.; Baiocco, C.; et al. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 mm to beyond 2.4 mm. Light. Sci. Appl. 2018, 7, 17131. [Google Scholar] [CrossRef] [PubMed]
- Lamont, M.R.; Luther-Davies, B.; Choi, D.Y.; Madden, S.; Eggleton, B.J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express 2008, 16, 14938–14944. [Google Scholar] [CrossRef]
- Dave, U.D.; Ciret, C.; Gorza, S.P.; Combrie, S.; Rossi, A.D.; Raineri, F.; Roelkens, G.; Kuyken, B. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 2015, 40, 3584–3587. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.K.; Lamont, M.R.; Griffith, A.G.; Okawachi, Y.; Lipson, M.; Gaeta, A.L. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 2014, 39, 4518–4521. [Google Scholar] [CrossRef] [PubMed]
- Chiles, J.; Gai, X.; Luther-Davies, B.; Fathpour, S. Mid-infrared supercontinuum generation in high-contrast, fusion-bonded silicon membrane waveguides. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017; pp. 313–314. [Google Scholar] [CrossRef]
- Sinobad, M.; Monat, C.; Luther-Davies, B.; Ma, P.; Madden, S.; Moss, D.J.; Mitchell, A.; Allioux, D.; Orobtchouk, R.; Boutami, S.; et al. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica 2018, 5, 360–366. [Google Scholar] [CrossRef]
- Singh, N.; Hudson, D.D.; Yu, Y.; Grillet, C.; Jackson, S.D.; Casas-Bedoya, A.; Read, A.; Atanackovic, P.; Duvall, S.G.; Palomba, S.; et al. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica 2015, 2, 797–802. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Hagan, D.J.; Van Stryland, E.W. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 1990, 65, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Fathpour, S. Second-Harmonic Generation in Integrated Photonics on Silicon. Phys. Status Solidi A 2018, 215, 1700684. [Google Scholar] [CrossRef]
- Fathpour, S. Heterogeneous Nonlinear Integrated Photonics. IEEE J. Quantum Electron. 2018, 54, 1–16. [Google Scholar] [CrossRef]
- Chang, L.; Boes, A.; Guo, X.; Spencer, D.T.; Kennedy, M.; Peters, J.D.; Volet, N.; Chiles, J.; Kowligy, A.; Nader, N.; et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photonics Rev. 2018, 12, 1800149. [Google Scholar] [CrossRef]
- Guo, X.; Zou, C.L.; Tang, H.X. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 2016, 3, 1126–1131. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.; Ryu, K.K.; Schuck, C.; Fong, K.Y.; Palacios, T.; Tang, H.X. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 2011, 19, 10462–10470. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.S.; Foster, M.A.; Gaeta, A.L.; Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 2011, 19, 11415–11421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.; Malinowski, M.; Honardoost, A.; Talukder, J.R.; Rabiei, P.; Delfyett, P.; Fathpour, S. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express 2016, 24, 29941–29947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Langrock, C.; Marandi, A.; Jankowski, M.; Zhang, M.; Desiatov, B.; Fejer, M.M.; Lončar, M. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 2018, 5, 1438–1441. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Malinowski, M.; Tremblay, J.E.; Rao, A.; Camacho-González, G.F.; Ramirez, R.B.; Plascak, M.; Richardson, K.A.; Delfyett, P.; Wu, M.C.; et al. Integrated thin-film lithium-niobate waveguides on silicon for second-harmonic generation pumped at 1875 nm. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Chang, L.; Volet, N.; Li, Y.; Peters, J.; Bowers, J.E. A thin-film PPLN waveguide for second-harmonic generation at 2-μm. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 587–588. [Google Scholar]
- Chang, L.; Pfeiffer, M.H.; Volet, N.; Zervas, M.; Peters, J.D.; Manganelli, C.L.; Stanton, E.J.; Li, Y.; Kippenberg, T.J.; Bowers, J.E. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 2017, 42, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Honardoost, A.; Gonzalez, G.F.C.; Khan, S.; Malinowski, M.; Rao, A.; Tremblay, J.; Yadav, A.; Richardson, K.; Wu, M.C.; Fathpour, S. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Gonzalez, G.F.C.; Malinowski, M.; Honardoost, A.; Fathpour, S. Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities. Appl. Opt. 2019, 58, D1–D6. [Google Scholar] [CrossRef]
- Tremblay, J.E.; Malinowski, M.; Camacho-Gonzalez, G.; Fathpour, S.; Wu, M.C. Large Bandwidth Waveguide Spectral Splitters Using Higher-Order Mode Evolution. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Malinowski, M.; Tremblay, J.; Gonzalez, G.F.C.; Rao, A.; Khan, S.; Hsu, P.; Yadav, A.; Richardson, K.A.; Delfyett, P.; Wu, M.C.; et al. Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017; pp. 261–262. [Google Scholar]
Material | SiN | SiN | SiN | AlN | LiNbO |
n [m·W] | |||||
span | 600–1700 + nm | 520–1700 + nm | 600–1900 nm | 500–4000 nm | 400–2400 nm |
pump wavelength | 1510 nm | 1550 nm | 1055 nm | 1550 nm | 1506 nm |
pulse energy | 62 pJ | 110 pJ | 36 pJ | 800 pJ | 185 pJ |
pulse duration | 200 fs | 80 fs | 64 fs | 80 fs | 160 fs |
repetition rate | 80 MHz | 100 MHz | 1 GHz | 100 MHz | 80 MHz |
total insertion loss | 7 dB | 4 dB | 8 dB | 8 dB | 8.5 dB |
Material | Strained SiN | NA | PPLN | AlN | LiNbO |
referencing scheme | f-2f | f-3f | f-2f | f-2f | f-2f |
SHG/THG | 770 nm | 420 nm | 680 nm | 780 nm | 800 nm |
variable delay | No | No | Yes | No | No |
CEO SNR | 27 dB | 23 dB | 40 dB | 37 dB | 30 dB |
reference | [29] | [30] | [31] | [32] | [33] |
Material | III-V/Si | III-V/Si | III-V/Si | InP | InP | InP | Er fiber (+EDFA) |
---|---|---|---|---|---|---|---|
repetition rate | 19 GHz | 1 GHz | 20 GHz | 30 GHz | 2.5 GHz | 1 GHz | 50–200 MHz |
pulse duration | 1.83 ps | 15 ps | 900 fs | 900 fs | 9.8 ps | 70 ps | <300 fs (<100 fs) |
opt. bandwidth | - | 12 nm | 3 nm | 15 nm | 3 nm | 5 nm | (~50 nm) |
band. threshold. | - | −10 dB | −3 dB | −10 dB | −3 dB | −10 dB | −3 dB |
power | 9 mW | - | 1.8 mW | 0.25 mW | 80 uW | 0.59 mW | ~5 mW |
est. | coup. | coup. | coup. | (<200 mW) | |||
3 dB optical lw | - | 400 kHz | - | 29 MHz | - | 80 MHz | 10 s kHz |
RF lw | 6 kHz | 0.9 kHz | 1.1 kHz | 500 kHz | 6 kHz/61 kHz | 1 MHz | - |
RF lw threshold | −3 dB | −10 dB | −3 dB | −20 dB | −3 dB/−20 dB | −20 dB | - |
timing jitter | 1.2 ps | - | - | 4.5 ps | - | 4.16 ps | <2 fs |
int. range | 0.1 MHz– | - | - | 100 Hz– | 10 kHz– | 20 kHz– | 10 kHz– |
100 MHz | - | - | 30 MHz | 10 MHz | 80 MHz | 10 MHz | |
reference | [61] | [57] | [56] | [62] | [63] | [64] | [37,58,59,60] |
Material | GeSbS | AsS | InGaP | Si |
---|---|---|---|---|
[m·W] | ||||
span | 1030–2080 nm | 1200–1700 + nm | 1000–2100 nm | 1150–2400 + nm |
pump wavelength | 1550 nm | 1550 nm | 1550 nm | 1900 nm |
pulse energy | 26 pJ | 60 pJ | 2 pJ | 4 pJ |
pulse duration | 240 fs | 610 fs | 170 fs | 50 fs |
repetition rate | 25 MHz | 10 MHz | 82 MHz | 200 MHz |
propagation loss | 0.5 dB/cm | 0.6 dB/cm | 12 dB/cm | 1.5 dB/cm |
references | [49] | [77] | [78] | [76] |
Material | LiNbO | GaAs | AlN | GaN | Strained SiN |
---|---|---|---|---|---|
d [] | 30 pmV | 119 pmV | 1 pmV | 8 pmV | eff. 0.02 pmV |
efficiency | 17%W | 255% W | 2300% W | 0.015% W | - |
efficiency | 4600% Wcm | 13,000% Wcm | - | - | - |
SHG mode order | fundamental | fundamental | 5th | 6th | 6th |
architecture | waveguide | waveguide | microring | microring | microring |
reference | [85] | [86] | [87] | [88] | [89] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, M.; Bustos-Ramirez, R.; Tremblay, J.-E.; Camacho-Gonzalez, G.F.; Wu, M.C.; Delfyett, P.J.; Fathpour, S. Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers. Micromachines 2019, 10, 391. https://doi.org/10.3390/mi10060391
Malinowski M, Bustos-Ramirez R, Tremblay J-E, Camacho-Gonzalez GF, Wu MC, Delfyett PJ, Fathpour S. Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers. Micromachines. 2019; 10(6):391. https://doi.org/10.3390/mi10060391
Chicago/Turabian StyleMalinowski, Marcin, Ricardo Bustos-Ramirez, Jean-Etienne Tremblay, Guillermo F. Camacho-Gonzalez, Ming C. Wu, Peter J. Delfyett, and Sasan Fathpour. 2019. "Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers" Micromachines 10, no. 6: 391. https://doi.org/10.3390/mi10060391
APA StyleMalinowski, M., Bustos-Ramirez, R., Tremblay, J.-E., Camacho-Gonzalez, G. F., Wu, M. C., Delfyett, P. J., & Fathpour, S. (2019). Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers. Micromachines, 10(6), 391. https://doi.org/10.3390/mi10060391