A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure
Abstract
:1. Introduction
2. Design of Planar Wideband Feed Antenna
3. Resonant-Cavity Antennas (RCA) Design and Interfacing with Planar Feed
4. Measurement
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R. Compact High-Gain Antenna with Simple All-Dielectric Partially Reflecting Surface. IEEE Trans. Antennas Propag. 2018, 66, 4343–4348. [Google Scholar] [CrossRef]
- Weily, A.R.; Esselle, K.P.; Sanders, B.C.; Bird, T.S. High-gain 1D EBG resonator antenna. Microw. Opt. Technol. Lett. 2005, 47, 107–114. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.; Bird, T. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. Antennas Propag. 2012, 60, 743–750. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.; Hall, P. Multilayer partially reflective surfaces for broadband fabry-perot cavity antennas. IEEE Trans. Antennas Propag. 2014, 62, 3474–3481. [Google Scholar] [CrossRef]
- Al-Tarifi, M.A.; Anagnostou, D.E.; Amert, A.K.; Whites, K.W. Two-cavity model for creating two high-directivity bands of the resonant cavity antenna with flexible and dynamic control. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1512–1513. [Google Scholar]
- Weily, A.; Horvath, L.; Esselle, K.; Sanders, B.; Bird, T. A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag. 2005, 53, 216–223. [Google Scholar] [CrossRef]
- Meng, F.; Sharma, S.K. A Dual-Band High-Gain Resonant Cavity Antenna with a Single Layer Superstrate. IEEE Trans. Antennas Propag. 2015, 63, 2320–2325. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P. Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation. Electron. Lett. 2016, 52, 266–268. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.P. A method to design dual-band, high directivity EBG resonator antennas using single-resonant, single layer partially reflective surfaces. Prog. Electromagn. Res. C 2010, 13, 245–257. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.; Wei, G.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 229–232. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.; Williams, J.; Yang, H. Radiation characteristics of a 2D periodic leaky-wave antenna using metal patches or slots. IEEE Antennas Propag. Soc. Int. Symp. 2001, 3, 260–263. [Google Scholar]
- Hashmi, R.M.; Zeb, B.A.; Esselle, K.P. Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans. Antennas Propag. 2014, 62, 2970–2977. [Google Scholar] [CrossRef]
- Al-Tarifi, M.A.; Anagnostou, D.E.; Amert, A.K.; Whites, K.W. The puck antenna: A compact design with wideband, high-gain operation. IEEE Trans. Antennas Propag. 2015, 63, 1868–1873. [Google Scholar] [CrossRef]
- Zeb, B.A.; Hashmi, R.M.; Esselle, K.P. Wideband gain enhancement of a slot antenna using one unprinted dielectric superstrate. IET Electron. Lett. 2015, 51, 1146–1148. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Trans. Antennas Propag. 2016, 64, 830–835. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P. Achieving a large gain bandwidth product from a compact antenna. IEEE Trans. Antennas Propag. 2017, 65, 3437–3446. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. A wideband EBG resonator antenna with an extremely small footprint area. Microw. Opt. Technol. Lett. 2015, 57, 1531–1535. [Google Scholar] [CrossRef]
- Wu, F.; Luk, K.M. Wideband high-gain open resonator antenna using a spherically modified, second-order cavity. IEEE Trans. Antennas Propag. 2017, 65, 2112–2116. [Google Scholar] [CrossRef]
- Ge, Y.; Sun, Z.; Chen, Z.; Chen, Y.Y. A high-gain wideband low profile fabry-perot resonator antenna with a conical short horn. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1889–1892. [Google Scholar] [CrossRef]
Parameter | wS | wSS | wL | wLL | fW |
---|---|---|---|---|---|
9.0 | 4.5 | 13.125 | 2.875 | 6 | |
Parameter | fSL | fSW | subx | suby | fL |
6.0 | 3.0 | 80.0 | 80.0 | 47.5 |
Parameter | r1 | r2 | r3 | r4 | h |
---|---|---|---|---|---|
14 | 20 | 29.6 | 39.5 | 16 | |
Parameter | t1 | t2 | t3 | t4 | hL |
11.9 | 11.4 | 10.16 | 8.18 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, A.A.; Hashmi, R.M.; Asadnia, M.; Matekovits, L.; Esselle, K.P. A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure. Micromachines 2019, 10, 308. https://doi.org/10.3390/mi10050308
Baba AA, Hashmi RM, Asadnia M, Matekovits L, Esselle KP. A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure. Micromachines. 2019; 10(5):308. https://doi.org/10.3390/mi10050308
Chicago/Turabian StyleBaba, Affan A, Raheel M Hashmi, Mohsen Asadnia, Ladislau Matekovits, and Karu P Esselle. 2019. "A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure" Micromachines 10, no. 5: 308. https://doi.org/10.3390/mi10050308
APA StyleBaba, A. A., Hashmi, R. M., Asadnia, M., Matekovits, L., & Esselle, K. P. (2019). A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure. Micromachines, 10(5), 308. https://doi.org/10.3390/mi10050308