Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates
Abstract
:1. Introduction
2. Results & Discussion
2.1. Venom Composition Changes Slowly over Time
2.2. Peak-by-Peak Analysis Reveals Both Modes of Expression Variation
2.3. Assessing Testosterone as a Predictor of Venom Change
2.4. Mode of Dietary Shifts
3. Conclusions
4. Materials and Methods
4.1. Acquisition of Specimens and Samples
4.2. High-Performance Liquid Chromatography
4.3. Testosterone ELISA
4.4. Dietary Shifts
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cabej, N.R. Epigenetic Principles of Evolution; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Werner, E.E.; Gilliam, J.F. The Ontogenetic Niche and Species Interactions in Size-Structured Populations. Annu. Rev. Ecol. Syst. 1984, 15, 393–425. [Google Scholar] [CrossRef]
- Claessen, D.; Dieckmann, U. Ontogenetic niche shifts and evolutionary branching in size-structured populations. Evol. Ecol. Res. 2002, 4, 189–217. [Google Scholar]
- Rowe, L.; Ludwig, D. Size and Timing of Metamorphosis in Complex Life Cycles: Time Constraints and Variation. Ecology 1991, 72, 413–427. [Google Scholar] [CrossRef]
- Graham, B.S.; Grubbs, D.; Holland, K.; Popp, B.N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 2007, 150, 647–658. [Google Scholar] [CrossRef]
- Cipriani, V.; Debono, J.; Goldenberg, J.; Jackson, T.N.; Arbuckle, K.; Dobson, J.; Koludarov, I.; Li, B.; Hay, C.; Dunstan, N.; et al. Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja). Comp. Biochem. Physiol. Part C 2017, 197, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, K.E.; Boege, K. Future directions in the ontogeny of plant defence: Understanding the evolutionary causes and consequences. Ecol. Lett. 2017, 20, 403–411. [Google Scholar] [CrossRef]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B Boil. Sci. 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [Green Version]
- Calvete, J.J.; Sanz, L.; Cid, P.; De La Torre, P.; Flores-Díaz, M.; Dos Santos, M.C.; Borges, A.; Bremo, A.; Angulo, Y.; Lomonte, B.; et al. Snake Venomics of the Central American RattlesnakeCrotalus simusand the South AmericanCrotalus durissusComplex Points to Neurotoxicity as an Adaptive Paedomorphic Trend alongCrotalusDispersal in South America. J. Proteome Res. 2010, 9, 528–544. [Google Scholar] [CrossRef]
- Durban, J.; Pérez, A.; Sanz, L.; Gómez, A.; Bonilla, F.; Rodríguez, S.; Chacón, D.; Sasa, M.; Angulo, Y.; Gutiérrez, J.M.; et al. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genom. 2013, 14, 234. [Google Scholar] [CrossRef] [Green Version]
- Durban, J.; Sanz, L.; Trevisan-Silva, D.; Neri-Castro, E.; Alagón, A.; Calvete, J.J. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts. J. Proteome Res. 2017, 16, 3370–3390. [Google Scholar] [CrossRef]
- Gibbs, H.L.; Sanz, L.; Chiucchi, J.E.; Farrell, T.M.; Calvete, J.J. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J. Proteom. 2011, 74, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.N.W.; Koludarov, I.; Ali, S.A.; Dobson, J.; Zdenek, C.N.; Dashevsky, D.; Brouw, B.O.D.; Masci, P.P.; Nouwens, A.; Josh, P.; et al. Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms. Toxins 2016, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- Mackessy, S.P.; Sixberry, N.M.; Heyborne, W.H.; Fritts, T. Venom of the Brown Treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon 2006, 47, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, M.; Sanz, L.; Flores-Díaz, M.; Sasa, M.; Núñez, V.; Alape-Girón, A.; Calvete, J.J. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J. Proteom. 2012, 77, 280–297. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Margres, M.J.; Ward, M.; Sanchez, E.E. The genetics of venom ontogeny in the eastern diamondback rattlesnake (Crotalus adamanteus). PeerJ 2017, 5, e3249. [Google Scholar] [CrossRef] [Green Version]
- Underwood, A.H.; Seymour, J. Venom ontogeny, diet and morphology in Carukia barnesi, a species of Australian box jellyfish that causes Irukandji syndrome. Toxicon 2007, 49, 1073–1082. [Google Scholar] [CrossRef]
- Wray, K.P.; Margres, M.J.; Seavy, M.; Rokyta, D.R. Early significant ontogenetic changes in snake venoms. Toxicon 2015, 96, 74–81. [Google Scholar] [CrossRef]
- Zelanis, A.; Ventura, J.D.S.; Chudzinski-Tavassi, A.M.; Furtado, M.D.F.D. Variability in expression of Bothrops insularis snake venom proteases: An ontogenetic approach. Comp. Biochem. Physiol. Part C 2007, 145, 601–609. [Google Scholar] [CrossRef]
- McElroy, T.; McReynolds, C.N.; Gulledge, A.; Knight, K.R.; Smith, W.E.; Albrecht, E.A. Differential toxicity and venom gland gene expression in Centruroides vittatus. PLoS ONE 2017, 12, e0184695. [Google Scholar] [CrossRef] [Green Version]
- Casewell, N.R.; Wüster, W.; Vonk, F.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Mackessy, S.P. Venom Ontogeny in the Pacific Rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia 1988, 1988, 1445927. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Avila, C.; Camacho, Z.; Lomonte, B. Ontogenetic changes in the venom of the snake Lachesis muta stenophrys (bushmaster) from Costa Rica. Toxicon 1990, 28, 419–426. [Google Scholar] [CrossRef]
- Borja, M.; Neri-Castro, E.; Pérez-Morales, R.; Strickland, J.L.; Ponce-López, R.; Parkinson, C.L.; Espinosa-Fematt, J.A.; Sáenz-Mata, J.; Flores-Martínez, E.; Alagón, A.; et al. Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes (Crotalus molossus nigrescens). Toxins 2018, 10, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casewell, N.R.; Wagstaff, S.C.; Wüster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 9205–9210. [Google Scholar] [CrossRef] [Green Version]
- Massey, D.J.; Calvete, J.J.; Sánchez, E.E.; Sanz, L.; Richards, K.; Curtis, R.; Boesen, K. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J. Proteom. 2012, 75, 2576–2587. [Google Scholar] [CrossRef]
- Saviola, A.J.; Pla, D.; Sanz, L.; Castoe, T.A.; Calvete, J.J.; Mackessy, S.P. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®. J. Proteom. 2015, 121, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J.; Sanz, L.; Pérez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutiérrez, J.M.; Chalkidis, H.M.; Mourão, R.H.; et al. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 2011, 74, 510–527. [Google Scholar] [CrossRef]
- Claunch, N.M.; Frazier, J.A.; Escallón, C.; Vernasco, B.J.; Moore, I.T.; Taylor, E.N. Physiological and behavioral effects of exogenous corticosterone in a free-ranging ectotherm. Gen. Comp. Endocrinol. 2017, 248, 87–96. [Google Scholar] [CrossRef]
- Margres, M.J.; McGivern, J.J.; Seavy, M.; Wray, K.P.; Facente, J.; Rokyta, D.R. Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species. Genetics 2015, 199, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Holding, M.L.; Biardi, J.E.; Gibbs, H.L. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B Boil. Sci. 2016, 283, 20152841. [Google Scholar] [CrossRef]
- Holding, M.L.; Margres, M.J.; Rokyta, D.R.; Gibbs, H.L. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus). J. Evol. Biol. 2018, 31, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Rautsaw, R.M.; Hofmann, E.P.; Margres, M.J.; Holding, M.L.; Strickland, J.L.; Mason, A.J.; Rokyta, D.R.; Parkinson, C.L. Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (Crotalus cerastes). Proc. R. Soc. B Boil. Sci. 2019, 286, 20190810. [Google Scholar] [CrossRef] [PubMed]
- Pla, D.; Sanz, L.; Sasa, M.; Acevedo, M.E.; Dwyer, Q.; Durban, J.; Pérez, A.; Rodriguez, Y.; Lomonte, B.; Calvete, J.J. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J. Proteom. 2017, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Minton, S.A.; Weinstein, S.A. Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox). Toxicon 1986, 24, 71–80. [Google Scholar] [CrossRef]
- Smiley-Walters, S.A.; Farrell, T.M.; Gibbs, H.L. High levels of functional divergence in toxicity towards prey among the venoms of individual pigmy rattlesnakes. Biol. Lett. 2019, 15, 20180876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittenberg, R.D.; Beaupre, S.J. Growth of Timber Rattlesnakes (Crotalus horridus) in an Agriculturally Fragmented and a Contiguously Forested Habitat. Herpetologica 2014, 70, 171–183. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Wray, K.P.; Margres, M.J. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genom. 2013, 14, 394. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; DeNardo, D.F. Sexual size dimorphism and growth plasticity in snakes: An experiment on the Western Diamond-backed Rattlesnake (Crotalus atrox). J. Exp. Zool. Part A 2005, 303, 598–607. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Reinert, H.K. The Effect of Ingested Transmitters upon the Temperature Preference of the Northern Water Snake, Nerodia S. sipedon. Herpetologica 1990, 46, 39–42. [Google Scholar] [CrossRef]
- Margres, M.J.; McGivern, J.J.; Wray, K.P.; Seavy, M.; Calvin, K.; Rokyta, D.R. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J. Proteom. 2014, 96, 145–158. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Margres, M.J.; Calvin, K. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms. G3 Genes Genomes Genet. 2015, 5, 2375–2382. [Google Scholar] [CrossRef] [Green Version]
- Schield, D.R.; Card, D.C.; Hales, N.R.; Perry, B.W.; Pasquesi, G.M.; Blackmon, H.; Adams, R.H.; Corbin, A.B.; Smith, C.F.; Ramesh, B.; et al. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019, 29, 590–601. [Google Scholar] [CrossRef]
- Post, Y.; Puschhof, J.; Beumer, J.; Kerkkamp, H.M.; De Bakker, M.A.; Slagboom, J.; De Barbanson, B.; Wevers, N.R.; Spijkers, X.M.; Olivier, T.; et al. Snake Venom Gland Organoids. Cell 2020, 180, 233–247.e21. [Google Scholar] [CrossRef]
- King, R.B.; Cline, J.H.; Hubbard, C.J. Age and Litter Effects on Testosterone Levels in Young Water Snakes. Copeia 2000, 2000, 593–596. [Google Scholar] [CrossRef]
- Taylor, E.N.; DeNardo, D.F.; Jennings, D.H. Seasonal steroid hormone levels and their relation to reproduction in the Western Diamond-backed Rattlesnake, Crotalus atrox (Serpentes: Viperidae). Gen. Comp. Endocrinol. 2004, 136, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Lind, C.M.; Moore, I.T.; Vernasco, B.J.; Farrell, T.M. Seasonal testosterone and corticosterone patterns in relation to body condition and reproduction in a subtropical pitviper, Sistrurus miliarius. Gen. Comp. Endocrinol. 2018, 267, 51–58. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Lutterschmidt, D.I.; Mason, R.T.; Reinert, H.K. Seasonal variation in hormonal responses of timber rattlesnakes (Crotalus horridus) to reproductive and environmental stressors. J. Comp. Physiol. B 2009, 179, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.M.; Husak, J.F.; Eikenaar, C.; Moore, I.T.; Taylor, E.N.; Lind, C.R.P. The relationship between plasma steroid hormone concentrations and the reproductive cycle in the Northern Pacific rattlesnake, Crotalus oreganus. Gen. Comp. Endocrinol. 2010, 166, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Hoss, S.K.; Schuett, G.W.; Earley, R.L.; Smith, L.L. Reproduction in Male Crotalus adamanteus Beauvois (Eastern Diamond-Backed Rattlesnake): Relationship of Plasma Testosterone to Testis and Kidney Dimensions and the Mating Season. Southeast. Nat. 2011, 10, 95. [Google Scholar] [CrossRef]
- Claunch, N.M.; Holding, M.L.; Escallón, C.; Vernasco, B.; Moore, I.T.; Taylor, E.N. Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory. Toxicon 2017, 133, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Marques, O.a.V.; Sazima, I. Bothrops—Ecological and Phylogenetic Correlates of Feeding Habits. Biol. Vipers. 1996, 592, 307–328. Available online: http://jararacailhoa.org/conservacaoinsularis/bothrops_feeding.pdf (accessed on 13 May 2020).
- Glaudas, X.; Glennon, K.L.; Martins, M.; Luiselli, L.; Fearn, S.; Trembath, D.F.; Jelić, D.; Alexander, G.J. Foraging mode, relative prey size and diet breadth: A phylogenetically explicit analysis of snake feeding ecology. J. Anim. Ecol. 2019, 88, 757–767. [Google Scholar] [CrossRef]
- Babb, R.D.; Bradley, G.L.; Brennan, T.C.; Holycross, A.T. Preliminary assessment of the diet of gyalopion quadrangulare (serpentes: Colubridae). Southwest. Nat. 2005, 50, 390–392. [Google Scholar] [CrossRef]
- Mackessy, S.P.; Williams, K.; Ashton, K.G. Ontogenetic Variation in Venom Composition and Diet of Crotalus oreganus concolor: A Case of Venom Paedomorphosis? Copeia 2003, 2003, 769–782. [Google Scholar] [CrossRef]
- Andrade, D.V.; Abe, A.S. Relationship of Venom Ontogeny and Diet in Bothrops; Allen Press: Lawrence, KS, USA, 1999. [Google Scholar]
- Amazonas, D.R.; Freitas-De-Sousa, L.A.; Orefice, D.P.; Sousa, L.F.; Martinez, M.G.; Mourão, R.H.V.; Chalkidis, H.D.M.; Camargo, P.; Moura-Da-Silva, A. Evidence for Snake Venom Plasticity in a Long-Term Study with Individual Captive Bothrops atrox. Toxins 2019, 11, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvete, J.J. The challenge of integrating proximate and ultimate causes to reconstruct the natural histories of venoms: The evolutionary link. Expert Rev. Proteom. 2016, 13, 1059–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putman, B.J.; Coss, R.G.; Clark, R.W. The ontogeny of antipredator behavior: Age differences in California ground squirrels (Otospermophilus beecheyi) at multiple stages of rattlesnake encounters. Behav. Ecol. Sociobiol. 2015, 69, 1447–1457. [Google Scholar] [CrossRef]
- Holding, M.L. Short-Distance Translocation of the Northern Pacific Rattlesnake (Crotalus o. oreganus): Effects on Volume and Neurogenesis in the Cortical Forebrain, Steroid Hormone Concentrations and Behaviors; California Polytechnic State University: San Luis Obispo, CA, USA, 2011. [Google Scholar] [CrossRef]
- Holding, M.L.; Frazier, J.A.; Dorr, S.W.; Henningsen, S.N.; Moore, I.T.; Taylor, E.N. Physiological and Behavioral Effects of Repeated Handling and Short-Distance Translocations on Free-Ranging Northern Pacific Rattlesnakes (Crotalus oreganus oreganus). J. Herpetol. 2014, 48, 233–239. [Google Scholar] [CrossRef]
- DetectX® Sample Types Validated: Testosterone Enzyme Immunoassay Kit Species Independent, n.d. Available online: www.ArborAssays.com (accessed on 18 April 2020).
- Clark, R.W. Diet of the Timber Rattlesnake, Crotalus horridus. J. Herpetol. 2002, 36, 494. [Google Scholar] [CrossRef]
- Means, D.B. Diamonds in the Rough: Natural History of the Eastern Diamondback Rattlesnake; Tall Timbers Press: Tallahassee, FL, USA, 2017. [Google Scholar]
- Core, R.; Team, R. A Language and Environment for Statistical Computing; R Foundation: Boston, MA, USA, 2019; Available online: https://www.r-project.org/ (accessed on 18 April 2020).
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modelling and Analysis of Compositional Data; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package “Vegan”. Community Ecology Package. R Package Version 2.5-6. 2019. Available online: https://cran.r-project.org/package=vegan (accessed on 27 September 2020).
- Palarea-Albaladejo, J.; Martín-Fernández, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.-N.; Bolker, B. minpack lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016. Available online: https://cran.r-project.org/package=minpack.lm (accessed on 27 September 2020).
Snake ID | Species | Df | Sums of Sqs | Mean Sqs | F | R2 | p-Value |
---|---|---|---|---|---|---|---|
KW1425 | C. adamanteus | 1 | 61.16 | 61.16 | 3.81 | 0.21 | 2 × 10−4 |
KW1726 | C. adamanteus | 1 | 263.08 | 263.08 | 20.58 | 0.58 | 9.9 × 10−5 |
MM0114 | C. adamanteus | 1 | 17.76 | 17.76 | 4.10 | 0.23 | 0.0032 |
KW1576 | C. horridus | 1 | 395.08 | 395.08 | 16.98 | 0.49 | 9.9 × 10−5 |
KW1594 | C. horridus | 1 | 217.70 | 217.70 | 23.43 | 0.63 | 9.9 × 10−5 |
MM0027 | C. horridus | 1 | 102.5 | 102.5 | 69.6 | 0.80 | 9.9 × 10−5 |
KW1753 | C. horridus | 1 | 210.43 | 210.43 | 14.46 | 0.41 | 9.9 × 10−5 |
MM0071 | C. horridus | 1 | 67.77 | 67.77 | 15.25 | 0.45 | 9.9 × 10−5 |
Linear | Sigmoid | |||||||
---|---|---|---|---|---|---|---|---|
Snake ID | Species | AIC | R2 | p-Value | AIC | R2 | p-Value | Tempo (Days) |
KW1425 | C. adamanteus | 22.7 | 0.81 | <0.0001 | 19.1 * | 0.88 | 0.0394 | 612 |
KW1726 | C. adamanteus | 22.8 | 0.82 | <0.0001 | 24.3 | 0.84 | 0.0087 | 811 |
MM0114 | C. adamanteus | 27.7 | 0.71 | <0.0001 | 27.1 | 0.78 | 0.0468 | 213 |
KW1576 | C. horridus | 29.5 | 0.76 | <0.0001 | 22.5 * | 0.86 | 0.0005 | 989 |
KW1594 | C. horridus | −0.7 * | 0.96 | <0.0001 | 1.7 | 0.96 | 0.0001 | 677 ** |
MM0027 | C. horridus | 17.6 | 0.88 | <0.0001 | −16.7 * | 0.98 | 0.0000 | 242 |
KW1753 | C. horridus | 51.7 | 0.53 | <0.0001 | 44.2 * | 0.70 | 0.0209 | 309 |
MM0071 | C. horridus | 41.3 | 0.65 | <0.0001 | 40.9 | 0.71 | 0.0254 | 719 |
Snake ID | Species | No Shift | Linear-Gradual | Sigmoid-Gradual | Sigmoid-Discrete | Proportion Shifting | Percent Gradual |
---|---|---|---|---|---|---|---|
KW1425 | C. adamanteus | 14 | 13 | 1 | 8 | 22/36, 61% | 64% |
KW1726 | C. adamanteus | 7 | 11 | 5 | 7 | 23/30, 77% | 70% |
MM0114 | C. adamanteus | 1 | 2 | 0 | 17 | 19/20, 95% | 11% |
KW1576 | C. horridus | 10 | 6 | 8 | 5 | 19/29, 66% | 74% |
KW1594 | C. horridus | 5 | 5 | 7 | 7 | 19/24, 79% | 63% |
MM0027 | C. horridus | 2 | 3 | 7 | 6 | 16/18, 89% | 63% |
KW1753 | C. horridus | 10 | 7 | 5 | 4 | 16/26, 62% | 75% |
MM0071 | C. horridus | 9 | 10 | 1 | 0 | 11/20, 55% | 100% |
Snake ID | Species | Sex | SVL (cm) | Locality | Sample Collection Date Range |
---|---|---|---|---|---|
KW1425 | C. adamanteus | F | 61–114 | WC, Lake Co, FL | 21 May 2013–16 February 2017 |
KW1726 | C. adamanteus | M | 40–110.5 | CB, Little St. George, FL | 7 October 2013–28 March 2017 * |
MM0114 ** | C. adamanteus | F | 37–95 | WC, Leon Co, FL | 19 November 2014–28 March 2017 |
KW1576 | C. horridus | M | 34–104.5 | CB, Baker Co, GA | 20 August 2013–5 July 2018 * |
KW1594 | C. horridus | M | 42–89.5 | CB, Baker Co, GA | 21 September 2013–30 July 2015 |
MM0027 ** | C. horridus | M | 64–113 | WC, Flint River, GA | 21 May 2013–1 July 2016 |
KW1753 | C. horridus | M | 34–100 | WC, Baker Co, FL | 12 September 2013–16 February 2017 |
MM0071 | C. horridus | M | 41–100.5 | WC, Columbia Co, FL | 14 May 2014–16 February 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schonour, R.B.; Huff, E.M.; Holding, M.L.; Claunch, N.M.; Ellsworth, S.A.; Hogan, M.P.; Wray, K.; McGivern, J.; Margres, M.J.; Colston, T.J.; et al. Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins 2020, 12, 659. https://doi.org/10.3390/toxins12100659
Schonour RB, Huff EM, Holding ML, Claunch NM, Ellsworth SA, Hogan MP, Wray K, McGivern J, Margres MJ, Colston TJ, et al. Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins. 2020; 12(10):659. https://doi.org/10.3390/toxins12100659
Chicago/Turabian StyleSchonour, Richard B., Emma M. Huff, Matthew L. Holding, Natalie M. Claunch, Schyler A. Ellsworth, Michael P. Hogan, Kenneth Wray, James McGivern, Mark J. Margres, Timothy J. Colston, and et al. 2020. "Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates" Toxins 12, no. 10: 659. https://doi.org/10.3390/toxins12100659
APA StyleSchonour, R. B., Huff, E. M., Holding, M. L., Claunch, N. M., Ellsworth, S. A., Hogan, M. P., Wray, K., McGivern, J., Margres, M. J., Colston, T. J., & Rokyta, D. R. (2020). Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins, 12(10), 659. https://doi.org/10.3390/toxins12100659