Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Methods
Anthropometric evaluation:
Biochemical evaluation:
2.3. Supplementation
2.4. Follow-up
2.5. Diet Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.P.; Rivera-Dommarco, J.; Shamah-Levy, T.; Villalpando-Hernández, S.; Franco, A.C.-N.L.; Romero-Martínez, M.H.-Á.M. Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales (Internet). Cuernavaca Morelos, México. 2012. Available online: http://ensanut.insp.mx/informes/ENSANUT2012ResultadosNacionales.pdf (accessed on 5 June 2014).
- Kwon, H.; Pessin, J.E. Adipokines mediate inflammation and insulin resistance. Front. Endocrinol. 2013, 4, 71. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.; Lehrke, M.; Parhofer, K.G.; Broedl, U.C. Adipokines and insulin resistance. Mol. Med. 2008, 14, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Salvador, J.; Frühbeck, G. Adipokines in the treatment of diabetes mellitus and obesity. Expert Opin. Pharmacother. 2009, 10, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, X.; Li, M.; Cheng, H.; Hou, D.; Wen, Y.; Katherine, C.; Mi, J. Abnormal adipokines associated with various types of obesity in Chinese children and adolescents. Biomed. Environ. Sci. 2011, 24, 12–21. [Google Scholar] [PubMed]
- Hampe, L.; Radjainia, M.; Xu, C.; Harris, P.W.; Bashiri, G.; Goldstone, D.C.; Brimble, M.A.; Wang, Y.; Mitra, A.K. Regulation and quality control of adiponectin assembly by endoplasmic reticulum chaperone ERp44. J. Biol. Chem. 2015, 290, 18111–18123. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Shouzu, A.; Omoto, S.; Inami, N.; Ueba, T.; Urase, F.; Maeda, Y. Effects of eicosapentaenoic acid on endothelial cell-derived microparticles, angiopoietins and adiponectin in patients with type 2 diabetes. J. Atheroscler. Thromb. 2009, 2, 83–90. [Google Scholar] [CrossRef]
- Martínez-Fernández, M.L.; Laiglesia, L.M.; Huerta, A.E.; Martínez, J.A.; Moreno-Aliaga, M.J. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 2015, 121, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Bhaswant, M.; Poudyal, H.; Brown, L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J. Nutr. Biochem. 2015, 26, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.M.; Ahn, S.M.; Kim, G.R.; Moon, Y.S.; Kim, S.H.; Park, Y.M.; Lee, W.K.; Min, T.S.; Han, S.H.; Yun, C.H. Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells. BMC Immunol. 2010, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Weakley, S.M.; Yao, Q.; Chen, C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012, 165, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Chait, A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta 2012, 1821, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism 2014, 63, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Kuryan, R.E.; Jacobson, M.S.; Frank, G.R. Non-HDL-cholesterol in an adolescent diabetes population. J. Clin. Lipidol. 2014, 8, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Ram, N.; Ahmed, B.; Hashmi, F.; Jabbar, A. Importance of measuring non-HDL cholesterol in type 2 diabetes patients. J. Pak. Med. Assoc. 2014, 64, 124–128. [Google Scholar] [PubMed]
- Nettleton, J.A.; Katz, R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: A Review. J. Am. Diet. Assoc. 2005, 105, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.-Y.; Cahill, L.E.; Mozaffarian, D. Effect of fish oil on circulating adiponectin: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2013, 98, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Kamat, S.G.; Roy, R. Evaluation of the effect of n-3 PUFA-rich dietary fish oils on lipid profile and membrane fluidity in alloxan-induced diabetic mice (Mus musculus). Mol. Cell. Biochem. 2016, 416, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Christou, G.A.; Rizos, E.C.; Mpechlioulis, A.; Penzo, C.; Pacchioni, A.; Nikas, D.N. Confronting the residual cardiovascular risk beyond statins: The role of fibrates, omega-3 fatty acids, or niacin, in diabetic patients. Curr. Pharm. Des. 2014, 20, 3675–3688. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Kajikawa, Y.; Otani, S.; Yamada, Y.; Takemoto, S.; Hirota, M.; Ikeda, M.; Iwagaki, H.; Saito, S.; Fujiwara, T. Protective effect of eicosapentaenoic acid on insulin resistance in hyperlipidemic patients and on the postoperative course of cardiac surgery patients: The possible involvement of adiponectin. Acta Med. Okayama 2014, 68, 349–361. [Google Scholar] [PubMed]
- Malekshahi, M.A.; Saedisomeolia, A.; Djalali, M.; Djazayery, A.; Pooya, S.; Sojoudi, F. Efficacy of omega-3 fatty acid supplementation on serum levels of tumour necrosis factor alpha, C-reactive protein and interleukin-2 in type 2 diabetes mellitus patients. Singap. Med. J. 2012, 53, 615–619. [Google Scholar]
- Derosa, G.; Cicero, A.F.; D’Angelo, A.; Borghi, C.; Maffioli, P. Effects of n-3 PUFAs on fasting plasma glucose and insulin resistance in patients with impaired fasting glucose or impaired glucose tolerance. Biofactors 2016, 42, 316–322. [Google Scholar] [PubMed]
- Vargas, M.L.; Almario, R.U.; Buchan, W.; Kim, K.; Karakas, S.E. Metabolic and endocrine effects of long chain vs. essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome. Metabolism 2011, 60, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Rafraf, M.; Farzadi, L.; Asghari-Jafarabadi, M.; Sabour, S. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac. J. Clin. Nutr. 2012, 21, 511–518. [Google Scholar] [PubMed]
- Karlström, B.E.; Järvi, A.E.; Byberg, L.; Berglund, L.G.; Vessby, B.O. Fatty fish in the diet of patients with type 2 diabetes: Comparison of the metabolic effects of foods rich in n-3 and n-6 fatty acids. Am. J. Clin. Nutr. 2011, 94, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, A.; Sotoudeh, G.; Djalali, M.; Eshraghian, M.R.; Keramatipour, M.; Nasli-Esfahani, E.; Shidfar, F.; Alvandi, E.; Toupchian, O.; Koohdani, F. Effect of DHA-rich fish oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. J. Clin. Lipidol. 2015, 9, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Hendrich, S. (n-3) Fatty acids: clinical trials in people with type 2 diabetes. Adv. Nutr. 2010, 1, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Kopecky, J. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol. Res. 2014, 63, S93–S118. [Google Scholar] [PubMed]
- Al-Hamodi, Z.; AL-Habori, M.; Al-Meeri, A.; Saif-Ali, R. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2014, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.J.; Economou, M.; Wallace, A.M.; Rumley, A.; Lowe, G.; Slater, C.; Caslake, M.; Sattar, N.; Lean, M.E. Benefits of salmon eating on traditional and novel vascular risk factors in young, non-obese healthy subjects. Atherosclerosis 2007, 193, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Stirban, A.; Nandrean, S.; Götting, C.; Stratmann, B.; Tschoepe, D. Effects of n-3 polyunsaturated fatty acids (PUFAs) on circulating adiponectin and leptin in subjects with type 2 diabetes mellitus. Horm. Metab. Res. 2014, 46, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Saltevo, J.; Kautiainen, H.; Vanhala, M. Gender differences in adiponectin and low-grade inflammation among individuals with normal glucose tolerance, prediabetes, and type 2 diabetes. Gend. Med. 2009, 6, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Snehalatha, C.; Mukesh, B.; Simon, M.; Viswanathan, V.; Haffner, S.M.; Ramachandran, A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 2003, 26, 3226–3229. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A. Circulating adipokines in healthy versus unhealthy overweight and obese subjects. Int. J. Endocrinol. 2014, 2014, 170434. [Google Scholar] [CrossRef] [PubMed]
- Azab, N.; Abdel-Aziz, T.; Ahmed, A.; El-deen, I.M. Correlation of serum resistin level with insulin resistance and severity of retinopathy in type 2 diabetes mellitus. J. Saudi Chem. Soc. 2016, 20, 272–277. [Google Scholar] [CrossRef]
- Tokuyama, Y.; Osawa, H.; Ishizuka, T.; Onuma, H.; Matsui, K.; Egashira, T.; Makino, H.; Kanatsuka, A. Serum resistin level is associated with insulin sensitivity in Japanese patients with type 2 diabetes mellitus. Metabolism 2007, 56, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Scherer, P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1212, E1–E19. [Google Scholar] [CrossRef] [PubMed]
- Finucane, F.M.; Luan, J.; Wareham, N.J.; Sharp, S.J.; O’Rahilly, S.; Balkau, B.; Flyvbjerg, A.; Walker, M.; Hojlund, K.; Nolan, J.J.; et al. Correlation of the leptin: Adiponectin ratio with measures of insulin resistance in non-diabetic individuals. Diabetologia 2009, 52, 2345–2349. [Google Scholar] [CrossRef] [PubMed]
- Müllner, E.; Plasser, E.; Brath, H.; Waldschütz, W.; Forster, E.; Kundi, M.; Wagner, K.H. Impact of polyunsaturated vegetable oils on adiponectin levels, glycaemia and blood lipids in individuals with type 2 diabetes: a randomised, double-blind intervention study. J. Hum. Nutr. Diet. 2014, 27, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Yiu, K.H.; Li, S.W.; Lee, S.; Tam, S.; Lau, C.P.; Tse, H.F. Fish-oil supplement has neutral effects on vascular and metabolic function but improves renal function in patients with Type 2 diabetes mellitus. Diabet. Med. 2010, 27, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Via, M.A.; Mechanick, J.I. Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med. Clin. N. Am. 2016, 100, 1285–1302. [Google Scholar] [CrossRef] [PubMed]
- Guadarrama-López, A.L.; Valdés-Ramos, R.; Kaufer-Horwitz, M.; Harbige, L.S.; Contreras, I.; Martínez-Carrillo, B.E. Relationship between fatty acid habitual intake and early inflammation biomarkers in individuals with and without type 2 diabetes in Mexico. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 234–241. [Google Scholar] [CrossRef] [PubMed]
- NORMA Oficial Mexicana NOM-015-SSA2-2010, Para la Prevención, Tratamiento y Control de la Diabetes Mellitus. Available online: http://www.salud.gob.mx/unidades/cdi/nom/m015ssa24.html (accessed on 5 June 2014).
- Von Frankenberg, A.D.; Silva, F.M.; de Almeida, J.C.; Piccoli, V.; do Nascimento, F.V.; Sost, M.M.; Leitao, C.B.; Remonti, L.L.; Umpierre, D.; Reis, A.F.; et al. Effect of dietary lipids on circulating adiponectin: A systematic review with meta-analysis of randomised controlled trials. Br. J. Nutr. 2014, 112, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Juárez-López, C.; Klünder-Klünder, M.; Madrigal-Azcárate, A.; Flores-Huerta, S. Omega-3 polyunsaturated fatty acids reduce insulin resistance and triglycerides in obese children and adolescents. Pediatr. Diabetes 2013, 14, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of Monounsaturated Fatty Acids on Glycaemic Control in Patients with Abnormal Glucose Metabolism: A Systematic Review and Meta-Analysis. Ann. Nutr. Metab. 2011, 58, 290–296. [Google Scholar] [CrossRef] [PubMed]
- McAllan, L.; Skuse, P.; Cotter, P.D.; O’ Connor, P.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.; Roche, H.M.; Nilaweera, K.N. Protein Quality and the Protein to Carbohydrate Ratio within a High Fat Diet Influences Energy Balance and the Gut Microbiota in C57BL/6J Mice. PLoS ONE 2014, 9, e88904. [Google Scholar] [CrossRef] [PubMed]
Fish Oil Group (n = 29) | Placebo Group (n = 25) | |||||
---|---|---|---|---|---|---|
Variables | Basal | Final | p | Basal | Final | p |
Body weight (kg) | 63.0 ± 9.3 | 62.7 ± 9.4 | 0.250 | 60.2 ± 6.4 | 60.0 ± 7.3 | 0.578 |
BMI (kg/m2) | 25.6 ± 2.4 | 25.4 ± 2.7 | 0.278 | 26.0 ± 1.6 | 25.9 ± 2.0 | 0.485 |
Body fat (%) | 30.9 ± 9.1 | 31.1 ± 7.2 | 0.889 | 29.9 ± 5.3 | 30.4 ± 6.1 | 0.614 |
Waist circumference (cm) | 86.4 ± 7.6 | 83.1 ± 6.2 | 0.001 | 83.2 ± 5.3 | 83.1 ± 6.1 | 0.893 |
Waist/hip ratio | 0.89 ± 0.05 | 0.90 ± 0.05 | 0.288 | 0.90 ± 0.05 | 0.92 ± 0.04 | 0.076 |
Omega-3 (n = 29) | Placebo (n = 25) | |||||
---|---|---|---|---|---|---|
Variables | Basal | Final | p | Basal | Final | p |
Glucose (mg/dL) ‡ | 177.2 ± 68.4 | 156.1 ± 69.4 | 0.011 | 184.6 ± 71.1 | 183.3 ± 53.3 | 0.326 |
Glycosylated hemoglobin (%) † | 9.6 ± 3.1 | 8.2 ± 1.9 | 0.009 | 10.0 ± 2.1 | 9.0 ± 1.8 | 0.004 |
Adiponectin (µg) ‡ | 23.6 ± 20.3 | 24.5 ± 13.0 | 0.177 | 22.8 ± 10.5 | 24.3 ± 13.3 | 0.563 |
Leptin (ng) † | 21.7 ± 15.5 | 3.9 ± 2.5 | 0.000 | 18.4 ± 13.2 | 3.5 ± 2.3 | 0.000 |
Resistin (ng) ‡ | 30.2 ± 14.0 | 65.9 ± 23.4 | 0.000 | 39.2 ± 12.5 | 61.3 ± 20.6 | 0.000 |
Leptin/adiponectin ratio † | 1.3 ± 1.2 | 0.24 ± 0.26 | 0.000 | 0.88 ± 0.68 | 0.17 ± 0.12 | 0.000 |
Insulin µU/mL ‡ | 7.6 ± 3.0 | 14.2 ± 8.2 | 0.000 | 6.5 ± 1.6 | 10.2 ± 3.3 | 0.000 |
HOMA-IR ‡ | 3.1 ± 1.3 | 5.3 ± 3.8 | 0.000 | 2.9 ± 1.2 | 4.4 ± 1.6 | 0.000 |
Total Cholesterol (mg/dL) † | 203.38 ± 33.72 | 199.10 ± 47.63 | 0.542 | 180.32 ± 30.56 | 209.75 ± 36.80 | 0.000 |
Triacylglycerides (mg/dL) † | 186.24 ± 85.58 | 137.28 ± 65.39 | 0.002 | 269.40 ± 169.30 | 251.20 ± 149.76 | 0.503 |
HDL-Cholesterol (mg/dL) † | 43.52 ± 7.95 | 48.13 ± 14.59 | 0.076 | 38.35 ± 9.51 | 40.01 ± 9.28 | 0.384 |
LDL-Cholesterol (mg/dL) † | 131.00 ± 34.66 | 129.82 ± 44.74 | 0.869 | 109.40 ± 34.22 | 127.26 ± 38.80 | 0.076 |
Non-HDL-Cholesterol (mg/dL) † | 159.52 ± 31.28 | 150.97 ± 44.26 | 0.152 | 141.97 ± 24.98 | 169.74 ± 38.15 | 0.000 |
Atherogenic Index † | 5.04 ± 1.77 | 4.37 ± 1.04 | 0.031 | 4.86 ± 1.06 | 5.52 ± 1.63 | 0.017 |
Variable | Omega-3 (n = 29) | Placebo (n = 25) | ||||
---|---|---|---|---|---|---|
Basal | Final | p | Basal | Final | p | |
Energy (kcal/day) | 1562.2 ± 387.4 | 1672.8 ± 665.2 | 0.476 | 1751.4 ± 479.9 | 1875.9 ± 698.5 | 0.276 |
Protein (g/day) | 57.3 ± 17.2 | 59.4 ± 24.3 | 0.737 | 50.8 ± 19.4 | 60.5 ± 27.8 | * 0.030 |
Carbohydrates (g/day) | 192.1 ± 60.4 | 187.8 ± 68.8 | 0.729 | 258.2 ± 73.1 | 255.0 ± 104.7 | 0.905 |
Lipids (g/day) | 59.5 ± 21.2 | 72.2 ± 38.4 | 0.097 | 54.2 ± 27.7 | 65.2 ± 31.1 | 0.092 |
Saturated fatty acids (g/day) | 16.4 ± 7.2 | 19.3 ± 11.9 | 0.271 | 11.4 ± 9.0 | 14.7 ± 9.7 | 0.065 |
Monounsaturated fatty acids (g/day) | 20.2 ± 8.2 | 24.6 ± 15.5 | 0.160 | 15.4 ± 10.6 | 22.6 ± 14.3 | * 0.013 |
Polyunsaturated fatty acids (g/day) | 13.2 ± 8.1 | 16.5 ± 12.7 | 0.197 | 13.2 ± 11.9 | 13.0 ± 6.4 | 0.367 |
Omega-3 fatty acids (g/day) | 0.89 ± 0.76 | 1.32 ± 0.34 | * 0.001 | 0.79 ± 1.12 | 0.75 ± 0.53 | 0.178 |
Omega-6 fatty acids (g/day) | 10.5 ± 7.7 | 13.6 ± 12.0 | 0.221 | 9.4 ± 11.0 | 8.8 ± 5.2 | 0.382 |
n6:n3 Ratio | 14:1 | 10:1 | * 0.025 | 16:1 | 14:1 | 0.882 |
EPA (g/day) | 0.077 ± 0.317 | 0.330 ± 0.018 | * 0.000 | 0.016 ± 0.037 | 0.047 ± 0.177 | 0.837 |
DHA (g/day) | 0.103 ± 0.236 | 0.287 ± 0.089 | * 0.000 | 0.086 ± 0.109 | 0.155 ± 0.187 | 0.074 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobo-Cejudo, M.G.; Valdés-Ramos, R.; Guadarrama-López, A.L.; Pardo-Morales, R.-V.; Martínez-Carrillo, B.E.; Harbige, L.S. Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients. Nutrients 2017, 9, 573. https://doi.org/10.3390/nu9060573
Jacobo-Cejudo MG, Valdés-Ramos R, Guadarrama-López AL, Pardo-Morales R-V, Martínez-Carrillo BE, Harbige LS. Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients. Nutrients. 2017; 9(6):573. https://doi.org/10.3390/nu9060573
Chicago/Turabian StyleJacobo-Cejudo, M. Gorety, Roxana Valdés-Ramos, Ana L. Guadarrama-López, Rosa-Virgen Pardo-Morales, Beatriz E. Martínez-Carrillo, and Laurence S. Harbige. 2017. "Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients" Nutrients 9, no. 6: 573. https://doi.org/10.3390/nu9060573
APA StyleJacobo-Cejudo, M. G., Valdés-Ramos, R., Guadarrama-López, A. L., Pardo-Morales, R.-V., Martínez-Carrillo, B. E., & Harbige, L. S. (2017). Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients. Nutrients, 9(6), 573. https://doi.org/10.3390/nu9060573