Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Serum 25-Hydroxyvitamin D Measurement and Nutritional Assessment
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Cancer Institute. Surveillance Research Program, Surveillance Systems Branch, Surveillance, Epidemiology, and End Results (seer) Program Research Data (1973–2011). 2013. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 20 March 2015). [Google Scholar]
- Nemesure, B.; Wu, S.Y.; Hennis, A.; Leske, M.C. Family history of prostate cancer in a black population. J. Immigr. Minor. Health 2013, 15, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Prostate cancer. N. Engl. J. Med. 2003, 349, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Batai, K.K.; Kittles, R.A. Can vitamin D supplementation reduce prostate cancer disparities? Pharmacogenomics 2016, 17, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Sutter, M.E.; Naitoh, J.; Dorey, F.; Csathy, G.S.; Aronson, W.J. Clinical characteristics in black and white men with prostate cancer in an equal access medical center. Urology 2000, 55, 387–390. [Google Scholar] [CrossRef]
- Morris, B.B.; Farnan, L.; Song, L.; Addington, E.L.; Chen, R.C.; Nielsen, M.E.; Mishel, M.; Mohler, J.L.; Bensen, J.T. Treatment decisional regret among men with prostate cancer: Racial differences and influential factors in the North Carolina Health Access and Prostate Cancer Treatment Project (HCaP-NC). Cancer 2015, 121, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Gilliland, F.D.; Eley, J.W.; Harlan, L.C.; Stephenson, R.A.; Stanford, J.L.; Albertson, P.C.; Hamilton, A.S.; Hunt, W.C.; Potosky, A.L. Racial and ethnic differences in advanced-stage prostate cancer: The prostate cancer outcomes study. J. Natl. Cancer Inst. 2001, 93, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.B.; Kelley, B.; Nyame, Y.A.; Martin, I.K.; Smith, D.J.; Castaneda, L.; Zagaja, G.J.; Hollowell, C.M.; Kittles, R.A. Predictors of serum vitamin D levels in African American and European American men in Chicago. Am. J. Men Health 2012, 6, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J. Clinical practice. Vitamin D insufficiency. N. Eng. J. Med. 2011, 364, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.S. Vitamin D and African americans. J. Nutr. 2006, 136, 1126–1129. [Google Scholar] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Clemens, T.L.; Adams, J.S.; Henderson, S.L.; Holick, M.F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1982, 1, 74–76. [Google Scholar] [CrossRef]
- Moore, C.E.; Murphy, M.M.; Holick, M.F. Vitamin D intakes by children and adults in the United States differ among ethnic groups. J. Nutr. 2005, 135, 2478–2485. [Google Scholar] [PubMed]
- Roberts, R.S.; Koudoro, F.H.; Elliott, M.S.; Han, Z. Is there pandemic vitamin D deficiency in the black population? A review of evidence. Open Nutr. 2015, 9, 5–11. [Google Scholar]
- Shea, M.K.; Houston, D.K.; Tooze, J.A.; Davis, C.C.; Johnson, M.A.; Hausman, D.B.; Cauley, J.A.; Bauer, D.C.; Tylavsky, F.; Harris, T.B.; et al. Correlates and prevalence of insufficient 25-hydroxyvitamin D status in black and white older adults: The health, aging and body composition study. J. Am. Geriatr. Soc. 2011, 59, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Schenk, J.M.; Till, C.A.; Tangen, C.M.; Goodman, P.J.; Song, X.; Torkko, K.C.; Kristal, A.R.; Peters, U.; Neuhouser, M.L. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: Results from the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Hulka, B.S. Is vitamin D deficiency a risk factor for prostate cancer? (hypothesis). Anticancer Res. 1990, 10, 1307–1311. [Google Scholar] [PubMed]
- Chen, T.C.; Holick, M.F. Vitamin D and prostate cancer prevention and treatment. Trends Endocrinol. Metab. TEM 2003, 14, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Marshall, D.T.; Savage, S.J.; Garrett-Mayer, E.; Kindy, M.S.; Gattoni-Celli, S. Vitamin D3 supplementation, low-risk prostate cancer, and health disparities. J. Steroid Biochem. Mol. Biol. 2013, 136, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol. Biomark. Prev. 2006, 15, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Breslow, R.A.; Graubard, B.I.; Ziegler, R.G. Dairy, calcium, and vitamin D intakes and prostate cancer risk in the national health and nutrition examination epidemiologic follow-up study cohort. Am. J. Clin. Nutr. 2005, 81, 1147–1154. [Google Scholar] [PubMed]
- Giovannucci, E.; Rimm, E.B.; Wolk, A.; Ascherio, A.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 1998, 58, 442–447. [Google Scholar] [PubMed]
- Balesaria, S.; Sangha, S.; Walters, J.R. Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G1193–G1197. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; Van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endoc. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.Y.; Feldman, D.; McNeal, J.E.; Peehl, D.M. Reduced 1alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res. 2001, 61, 2852–2856. [Google Scholar] [PubMed]
- Legrand, G.; Humez, S.; Slomianny, C.; Dewailly, E.; Vanden Abeele, F.; Mariot, P.; Wuytack, F.; Prevarskaya, N. Ca2+ pools and cell growth. Evidence for sarcoendoplasmic Ca2+-atpases 2b involvement in human prostate cancer cell growth control. J. Biol. Chem. 2001, 276, 47608–47614. [Google Scholar] [CrossRef] [PubMed]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [PubMed]
- Coates, R.J.; Eley, J.W.; Block, G.; Gunter, E.W.; Sowell, A.L.; Grossman, C.; Greenberg, R.S. An evaluation of a food frequency questionnaire for assessing dietary intake of specific carotenoids and vitamin E among low-income black women. Am. J. Epidemiol. 1991, 134, 658–671. [Google Scholar] [PubMed]
- Batai, K.; Murphy, A.B.; Shah, E.; Ruden, M.; Newsome, J.; Agate, S.; Dixon, M.A.; Chen, H.Y.; Deane, L.A.; Hollowell, C.M.; et al. Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum. Genet. 2014, 133, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Mondul, A.M.; Yu, K.; Parisi, D.; Horst, R.L.; Virtamo, J.; Weinstein, S.J. Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Mikhak, B.; Hunter, D.J.; Spiegelman, D.; Platz, E.A.; Hollis, B.W.; Giovannucci, E. Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and prostate cancer risk. Prostate 2007, 67, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.B.; Nyame, Y.; Martin, I.K.; Catalona, W.J.; Hollowell, C.M.; Nadler, R.B.; Kozlowski, J.M.; Perry, K.T.; Kajdacsy-Balla, A.; Kittles, R. Vitamin D deficiency predicts prostate biopsy outcomes. Clin. Cancer Res. 2014, 20, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.D.; Tulloch-Reid, M.K.; Lindsay, C.M.; Smith, G.; Bennett, F.I.; McFarlane-Anderson, N.; Aiken, W.; Coard, K.C. Both serum 25-hydroxyvitamin D and calcium levels may increase the risk of incident prostate cancer in Caribbean men of African ancestry. Cancer Med. 2015, 4, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Rowland, G.W.; Schwartz, G.G.; John, E.M.; Ingles, S.A. Protective effects of low calcium intake and low calcium absorption vitamin D receptor genotype in the California collaborative prostate cancer study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Rowland, G.W.; Schwartz, G.G.; John, E.M.; Ingles, S.A. Calcium intake and prostate cancer among African Americans: Effect modification by vitamin D receptor calcium absorption genotype. J. Bone Miner. Res. 2012, 27, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Zmuda, J.M.; Cauley, J.A.; Ferrell, R.E. Molecular epidemiology of vitamin D receptor gene variants. Epidemiol. Rev. 2000, 22, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Berndt, S.I.; Dodson, J.L.; Huang, W.Y.; Nicodemus, K.K. A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. J. Urol. 2006, 175, 1613–1623. [Google Scholar] [CrossRef]
- Bodiwala, D.; Luscombe, C.J.; French, M.E.; Liu, S.; Saxby, M.F.; Jones, P.W.; Fryer, A.A.; Strange, R.C. Polymorphisms in the vitamin D receptor gene, ultraviolet radiation, and susceptibility to prostate cancer. Environ. Mol. Mutagen. 2004, 43, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Steck, S.E.; Arab, L.; Zhang, H.; Bensen, J.T.; Fontham, E.T.; Johnson, C.S.; Mohler, J.L.; Smith, G.J.; Su, J.L.; Trump, D.L.; et al. Association between plasma 25-hydroxyvitamin D, ancestry and aggressive prostate cancer among African Americans and European Americans in pcap. PLoS ONE 2015, 10, e0125151. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Schneider, A.; Datta, N.S.; McCauley, L.K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 2006, 66, 9065–9073. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Albanes, D.; Berndt, S.I.; Peters, U.; Chatterjee, N.; Freedman, N.D.; Abnet, C.C.; Huang, W.Y.; Kibel, A.S.; Crawford, E.D.; et al. Vitamin D-related genes, serum vitamin D concentrations and prostate cancer risk. Carcinogenesis 2009, 30, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.C.; Thiem, U.; Roth, S.; Aggarwal, A.; Fetahu, I.; Tennakoon, S.; Gomes, A.R.; Brandi, M.L.; Bruggeman, F.; Mentaverri, R.; et al. Calcium sensing receptor signalling in physiology and cancer. Biochim. Biophys. Acta 2013, 1833, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, S.; Aggarwal, A.; Kallay, E. The calcium-sensing receptor and the hallmarks of cancer. Biochim. Biophys. Acta 2016, 1863, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
Aggressive Cases | Non-Aggressive Cases | ||
---|---|---|---|
Characteristics a | (n = 46) | (n = 58) | p-value a |
Age, mean (SD) | 66.4 (8.9) | 64.2 (8.9) | 0.21 |
BMI, kg/m2, mean (SD) | 27.3 (5.8) | 28.1 (4.7) | 0.48 |
PSA, ng/mL, mean (SD) | 66.5 (142.3) | 21.1 (52.6) | 0.05 |
Total calcium, mg, mean (SD) | 999.2 (534.6) | 809.3 (501.8) | 0.08 |
Family history of prostate cancer, n (%) * | 0.36 | ||
Yes | 7 (15.2) | 13 (22.4) | |
No | 29 (59.2) | 33 (56.9) | |
Income, n (%) * | 0.35 | ||
<$30,000/year | 26 (56.5) | 26 (44.8) | |
$30,001–$60,000/year | 8 (17.4) | 14 (24.1) | |
≥$60,001/year | 6 (13.4) | 12 (20.7) | |
Smoking status, n (%) * | 0.01 | ||
No | 9 (19.6) | 24 (41.4) | |
Yes, but quit | 23 (50.0) | 14 (24.1) | |
Yes | 10 (21.7) | 11 (18.9) | |
Serum 25(OH)D, ng/mL, n (%) | 0.06 | ||
<20 ng/mL | 32 (69.6) | 30 (51.7) | |
≥20 ng/mL | 13 (28.3) | 28 (48.3) | |
Education * | 0.55 | ||
High school | 14 (30.4) | 20 (35.5) | |
Some college | 2 (4.3) | 6 (10.3) | |
>4 years of college | 3 (6.5) | 8 (13.8) | |
Ultraviolet (UV)-B Radiation exposure * | 0.09 | ||
Low | 9 (19.6) | 20 (34.5) | |
Medium and High | 32 (69.6) | 32 (55.2) |
n (Aggressive/non-Aggressive) | Age-Adjusted Odds Ratio | Age-Adjusted 95% CI | Fully Adjusted Odds Ratio a | Fully Adjusted 95% CI | Fully Adjusted p-Value | |
---|---|---|---|---|---|---|
Serum 25(OH)D | ||||||
≥20 ng/mL | 13/25 | 1.0 | reference | 1.0 | reference | |
<20 ng/mL | 31/27 | 2.3 | 0.92–5.22 | 3.1 | 1.03–9.57 | 0.04 |
n (Aggressive/Non-Aggressive) | Age-Adjusted Odds Ratio | Age-Adjusted 95% CI | Fully Adjusted Odds Ratio b | Fully Adjusted 95% CI | Fully Adjusted p-Value | ||
---|---|---|---|---|---|---|---|
Low total calcium (<800 mg) | |||||||
Serum 25(OH)D | |||||||
≥20 ng/mL | 9/13 | 1.0 | reference | 1.0 | reference | ||
<20 ng/mL | 13/19 | 0.97 | 0.34–2.98 | 0.77 | 0.21–4.01 | 0.73 | |
High total calcium (≥800 mg) | |||||||
Serum 25(OH)D | |||||||
≥20 ng/mL | 4/12 | 1.0 | reference | 1.0 | reference | ||
<20 ng/mL | 18/8 | 7.1 | 1.72–28.42 | 7.3 | 2.15–47.68 | 0.03 |
rs731236 | ||||||
n (Aggressive/Non-Aggressive) | Age-Adjusted Odds Ratio | Age-adjusted 95% CI | Fully Adjusted Odds Ratio a | Fully Adjusted 95% CI | p-Value | |
Serum 25(OH)D | ||||||
≥20 ng/mL | 13/25 | 1.0 | reference | 1.0 | reference | |
<20 ng/mL | 30/27 | 2.19 | 0.98–5.13 | 2.98 | 0.98–9.05 | 0.07 |
rs1544410 | ||||||
n (Aggressive/Non-Aggressive) | Age-Adjusted Odds Ratio | Age-Adjusted 95% CI | Fully Adjusted Odds Ratio a | Fully Adjusted 95% CI | p-Value | |
Serum 25(OH)D | ||||||
≥20 ng/mL | 13/24 | 1.0 | reference | 1.0 | reference | |
<20 ng/mL | 29/25 | 2.19 | 0.98–5.13 | 3.03 | 0.99–9.60 | 0.07 |
rs11568820 | ||||||
n (Aggressive/Non-Aggressive) | Age-Adjusted Odds Ratio | Age-Adjusted 95% CI | Fully Adjusted Odds Ratio a | Fully Adjusted 95% CI | p-Value | |
Serum 25(OH)D | ||||||
≥20 ng/mL | 13/25 | 1.0 | reference | 1.0 | reference | |
<20 ng/mL | 28/23 | 2.19 | 0.98–5.13 | 3.64 | 1.12–11.75 | 0.05 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, S.M.; Batai, K.; Ahaghotu, C.; Agurs-Collins, T.; Kittles, R.A. Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men. Nutrients 2017, 9, 12. https://doi.org/10.3390/nu9010012
Nelson SM, Batai K, Ahaghotu C, Agurs-Collins T, Kittles RA. Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men. Nutrients. 2017; 9(1):12. https://doi.org/10.3390/nu9010012
Chicago/Turabian StyleNelson, Shakira M., Ken Batai, Chiledum Ahaghotu, Tanya Agurs-Collins, and Rick A. Kittles. 2017. "Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men" Nutrients 9, no. 1: 12. https://doi.org/10.3390/nu9010012
APA StyleNelson, S. M., Batai, K., Ahaghotu, C., Agurs-Collins, T., & Kittles, R. A. (2017). Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men. Nutrients, 9(1), 12. https://doi.org/10.3390/nu9010012