Next Article in Journal
Associations of Milk Consumption and Vitamin B2 and Β12 Derived from Milk with Fitness, Anthropometric and Biochemical Indices in Children. The Healthy Growth Study
Previous Article in Journal
Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner
Previous Article in Special Issue
Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Dietary Components and Metabolic Dysfunction: Translating Preclinical Studies into Clinical Practice

Herbert and Florence Irving Medical Center, Columbia University, New York, NY 10032, USA
Nutrients 2016, 8(10), 632; https://doi.org/10.3390/nu8100632
Submission received: 29 September 2016 / Accepted: 8 October 2016 / Published: 13 October 2016
(This article belongs to the Special Issue Diet and Metabolic Dysfunction)
The importance of diet in the pathophysiology of metabolic syndrome is well acknowledged [1,2,3] and may be crucial in the determination of cardiovascular risk and the development of cardiovascular complications [4,5,6,7]. The contributions presented here provide an updated systematic overview examining in detail the functional role of different diets and dietary components in maintaining glucose homeostasis and prevention of long-term complications. The issue entitled “Diet and Metabolic Dysfunction” encompasses 40 peer-reviewed articles, both in the basic research field and in the clinical scenario, written by worldwide renowned experts. Intriguingly, one of the assets of the present issue is in the melting pot of researchers involved in this project, literally working in all continents, with contributions from United States, Canada, Mexico, Argentina, Italy, Ireland, Spain, Sweden, Austria, Liechtenstein, Germany, Japan, Korea, China, Hong Kong, Taiwan, Malaysia, Saudi Arabia, South-Africa, Nigeria, and Australia.
This Special Issue of Nutrients includes both evidence-based original research and state-of-the-art reviews and meta-analyses of the scientific literature. There are articles investigating different dietary regimens [8,9,10,11,12,13,14,15] and articles focusing on specific nutrients. In particular, we present studies on: omega-3 fatty acids [16], barley [17], honey [18], capsaicin [19], magnesium [20], selenium [21], fructose [22,23], vanillic acid [24], glutamine [25], histidine [26], isoleucine and valine [27], quercetin [28], rutin [29], naringin [30], red ginseng [31], epigallocatechin gallate (a component of green tea) [32], cudrania tricuspidata fruits [33], aloe vera [34], and probiotics and prebiotics [35]. Furthermore, given the increasing interest towards gut microbiota and metabolic syndrome [2,36,37], I decided to also accept in this Special Issue three interesting papers exploring this topic [38,39,40].
This collection of papers shows that the selection of foods should be based on scientific evidence, knowing the properties of each dietary component.

Acknowledgments

Gaetano Santulli is supported by the National Institutes of Health (K99/R00 DK107895).

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Jahan-Mihan, A.; Rodriguez, J.; Christie, C.; Sadeghi, M.; Zerbe, T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015, 7, 9185–9217. [Google Scholar] [CrossRef] [PubMed]
  2. Kelly, K.B.; Kennelly, J.P.; Ordonez, M.; Nelson, R.; Leonard, K.; Stabler, S.; Gomez-Muñoz, A.; Field, C.J.; Jacobs, R.L. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats. Nutrients 2016, 8, 594. [Google Scholar] [CrossRef] [PubMed]
  3. Masumoto, S.; Terao, A.; Yamamoto, Y.; Mukai, T.; Miura, T.; Shoji, T. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci. Rep. 2016, 6, 31208. [Google Scholar] [CrossRef] [PubMed]
  4. Novak, J.; Olejnickova, V.; Tkacova, N.; Santulli, G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. Adv. Exp. Med. Biol. 2015, 887, 79–100. [Google Scholar] [PubMed]
  5. Cipolletta, E.; Campanile, A.; Santulli, G.; Sanzari, E.; Leosco, D.; Campiglia, P.; Trimarco, B.; Iaccarino, G. The G Protein Coupled Receptor Kinase 2 Plays an Essential Role in beta-Adrenergic Receptor-Induced Insulin Resistance. Cardiovasc. Res. 2009, 84, 407–415. [Google Scholar] [CrossRef] [PubMed]
  6. Sardu, C.; Carreras, G.; Katsanos, S.; Kamperidis, V.; Pace, M.C.; Passavanti, M.B.; Fava, I.; Paolisso, P.; Pieretti, G.; Nicoletti, G.F.; et al. Metabolic Syndrome Is Associated with a Poor Outcome in Patients Affected by Outflow Tract Premature Ventricular Contractions Treated by Catheter Ablation. BMC Cardiovasc. Disord. 2014, 14, 176. [Google Scholar] [CrossRef] [PubMed]
  7. Santulli, G. Coronary Heart Disease Risk Factors and Mortality. JAMA 2012, 307, 1137–1138. [Google Scholar] [CrossRef] [PubMed]
  8. Kobayashi, J.; Ohtake, K.; Uchida, H. NO-Rich Diet for Lifestyle-Related Diseases. Nutrients 2015, 7, 4911–4937. [Google Scholar] [CrossRef] [PubMed]
  9. Cerf, M.E.; Louw, J.; Herrera, E. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats. Nutrients 2015, 7, 7231–7241. [Google Scholar] [CrossRef] [PubMed]
  10. Garcia, M.; Bihuniak, J.D.; Shook, J.; Kenny, A.; Kerstetter, J.; Huedo-Medina, T.B. The Effect of the Traditional Mediterranean-Style Diet on Metabolic Risk Factors: A Meta-Analysis. Nutrients 2016, 8, 168. [Google Scholar] [CrossRef] [PubMed]
  11. König, D.; Zdzieblik, D.; Deibert, P.; Berg, A.; Gollhofer, A.; Büchert, M. Internal Fat and Cardiometabolic Risk Factors Following a Meal-Replacement Regimen vs. Comprehensive Lifestyle Changes in Obese Subjects. Nutrients 2015, 7, 9825–9833. [Google Scholar] [CrossRef] [PubMed]
  12. Chen, J.H.; Ouyang, C.; Ding, Q.; Song, J.; Cao, W.; Mao, L. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats. Nutrients 2015, 7, 4724–4738. [Google Scholar] [CrossRef] [PubMed]
  13. Al-Disi, D.A.; Al-Daghri, N.M.; Khan, N.; Alfadda, A.A.; Sallam, R.M.; Alsaif, M.; Sabico, S.; Tripathi, G.; McTernan, P.G. Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases. Nutrients 2015, 7, 6375–6389. [Google Scholar] [CrossRef] [PubMed]
  14. Garcia-Prieto, C.F.; Fernandez-Alfonso, M.S. Caloric Restriction as a Strategy to Improve Vascular Dysfunction in Metabolic Disorders. Nutrients 2016, 8, 370. [Google Scholar] [CrossRef] [PubMed]
  15. Cerf, M.E.; Herrera, E. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat. Nutrients 2016, 8, 25. [Google Scholar] [CrossRef] [PubMed]
  16. Lalia, A.Z.; Lanza, I.R. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation? Nutrients 2016, 8, 329. [Google Scholar] [CrossRef] [PubMed]
  17. Liu, L.; Wang, X.; Li, Y.; Sun, C. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley. Nutrients 2015, 7, 5556–5571. [Google Scholar] [CrossRef] [PubMed]
  18. Erejuwa, O.O.; Nwobodo, N.N.; Akpan, J.L.; Okorie, U.A.; Ezeonu, C.T.; Ezeokpo, B.C.; Nwadike, K.I.; Erhiano, E.; Abdul Wahab, M.S.; Sulaiman, S.A. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats. Nutrients 2016, 8, 95. [Google Scholar] [CrossRef] [PubMed]
  19. Sun, F.; Xiong, S.; Zhu, Z. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction. Nutrients 2016, 8, 174. [Google Scholar] [CrossRef] [PubMed]
  20. Bertinato, J.; Lavergne, C.; Rahimi, S.; Rachid, H.; Vu, N.A.; Plouffe, L.J.; Swist, E. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet. Nutrients 2016, 8, 253. [Google Scholar] [CrossRef] [PubMed]
  21. Ogawa-Wong, A.N.; Berry, M.J.; Seale, L.A. Selenium and Metabolic Disorders: An Emphasis on Type 2 Diabetes Risk. Nutrients 2016, 8, 80. [Google Scholar] [CrossRef] [PubMed]
  22. Alzamendi, A.; Zubiría, G.; Moreno, G.; Portales, A.; Spinedi, E.; Giovambattista, A. High Risk of Metabolic and Adipose Tissue Dysfunctions in Adult Male Progeny, Due to Prenatal and Adulthood Malnutrition Induced by Fructose Rich Diet. Nutrients 2016, 8, 178. [Google Scholar] [CrossRef] [PubMed]
  23. Zubiría, M.G.; Alzamendi, A.; Moreno, G.; Rey, M.A.; Spinedi, E.; Giovambattista, A. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016, 8, 198. [Google Scholar] [CrossRef] [PubMed]
  24. Chang, W.C.; Wu, J.S.; Chen, C.W.; Kuo, P.L.; Chien, H.M.; Wang, Y.T.; Shen, S.C. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients 2015, 7, 9946–9959. [Google Scholar] [CrossRef] [PubMed]
  25. He, L.; Weber, K.J.; Schilling, J.D. Glutamine Modulates Macrophage Lipotoxicity. Nutrients 2016, 8, 215. [Google Scholar] [CrossRef] [PubMed]
  26. Li, Y.C.; Li, C.L.; Qi, J.Y.; Huang, L.N.; Shi, D.; Du, S.S.; Liu, L.Y.; Feng, R.N.; Sun, C.H. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study. Nutrients 2016, 8, 420. [Google Scholar] [CrossRef] [PubMed]
  27. Arrieta-Cruz, I.; Su, Y.; Gutierrez-Juarez, R. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition. Nutrients 2016, 8, 79. [Google Scholar] [CrossRef] [PubMed]
  28. Leiherer, A.; Stoemmer, K.; Muendlein, A.; Saely, C.H.; Kinz, E.; Brandtner, E.M.; Fraunberger, P.; Drexel, H. Quercetin Impacts Expression of Metabolism- and Obesity- Associated Genes in SGBS Adipocytes. Nutrients 2016, 8, 282. [Google Scholar] [CrossRef] [PubMed]
  29. Seo, S.; Lee, M.S.; Chang, E.; Shin, Y.; Oh, S.; Kim, I.H.; Kim, Y. Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats. Nutrients 2015, 7, 8152–8169. [Google Scholar] [CrossRef] [PubMed]
  30. Adebiyi, O.O.; Adebiyi, O.A.; Owira, P.M. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications. Nutrients 2015, 7, 10352–10368. [Google Scholar] [CrossRef] [PubMed]
  31. Kho, M.C.; Lee, Y.J.; Park, J.H.; Kim, H.Y.; Yoon, J.J.; Ahn, Y.M.; Tan, R.; Park, M.C.; Cha, J.D.; Choi, K.M.; et al. Fermented Red Ginseng Potentiates Improvement of Metabolic Dysfunction in Metabolic Syndrome Rat Models. Nutrients 2016, 8, 369. [Google Scholar] [CrossRef] [PubMed]
  32. Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome. Nutrients 2015, 7, 5443–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Jo, Y.H.; Choi, K.M.; Liu, Q.; Kim, S.B.; Ji, H.J.; Kim, M.; Shin, S.K.; Do, S.G.; Shin, E.; Jung, G.; Yoo, H.S. Anti-Obesity Effect of 6,8-Diprenylgenistein, an Isoflavonoid of Cudrania tricuspidata Fruits in High-Fat Diet-Induced Obese Mice. Nutrients 2015, 7, 10480–10490. [Google Scholar] [CrossRef] [PubMed]
  34. Zhang, Y.; Liu, W.; Liu, D.; Zhao, T.; Tian, H. Efficacy of Aloe Vera Supplementation on Prediabetes and Early Non-Treated Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 388. [Google Scholar] [CrossRef] [PubMed]
  35. Yoo, J.Y.; Kim, S.S. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients 2016, 8, 173. [Google Scholar] [PubMed]
  36. Gambardella, J.; Santulli, G. Integrating Diet and Inflammation to Calculate Cardiovascular Risk. Atherosclerosis 2016, 253, 258–261. [Google Scholar] [PubMed]
  37. Ussar, S.; Fujisaka, S.; Kahn, C.R. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol. Metab. 2016, 5, 795–803. [Google Scholar] [CrossRef] [PubMed]
  38. Mejia-Leon, M.E.; Barca, A.M. Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients 2015, 7, 9171–9184. [Google Scholar] [CrossRef] [PubMed]
  39. Woting, A.; Blaut, M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016, 8, 202. [Google Scholar] [CrossRef] [PubMed]
  40. Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H.Y.; Chen, S.; Wang, X. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016, 8, 126. [Google Scholar] [CrossRef] [PubMed]

Share and Cite

MDPI and ACS Style

Santulli, G. Dietary Components and Metabolic Dysfunction: Translating Preclinical Studies into Clinical Practice. Nutrients 2016, 8, 632. https://doi.org/10.3390/nu8100632

AMA Style

Santulli G. Dietary Components and Metabolic Dysfunction: Translating Preclinical Studies into Clinical Practice. Nutrients. 2016; 8(10):632. https://doi.org/10.3390/nu8100632

Chicago/Turabian Style

Santulli, Gaetano. 2016. "Dietary Components and Metabolic Dysfunction: Translating Preclinical Studies into Clinical Practice" Nutrients 8, no. 10: 632. https://doi.org/10.3390/nu8100632

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop