Antioxidant and Antifatigue Activities of Polygonatum Alte-lobatum Hayata Rhizomes in Rats
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Animals and Treatment
2.3. Treadmill Exercise Test
2.4. Biochemical and Antioxidant Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Composition and Free Radical Scavenging Activity of EPA
Ingredients | Amount |
---|---|
Polyphenols | 14.29 ± 0.46 mg GAE/g |
Flavonoids | 9.97 ± 0.41 mg RE/g |
Polysaccharides | 365.46 ± 0.98 mg/g |
EPA (μg/mL) | DPPH inhibition (%) |
---|---|
10 | 56.11 ± 1.51 d |
8 | 46.62 ± 0.57 c |
6 | 39.28 ± 1.49 b |
4 | 35.58 ± 0.16 b |
2 | 31.82 ± 3.03 a |
Trend analysis P value | <0.0001 |
3.2. In Vivo Study of EPA Supplementation on Exercise Performance, Physical Fatigue and Antioxidant and Biochemical Variables Related to Fatigue in Rats
Molecules | Control | LEPA | MEPA | HEPA | Trend Analysis p Value |
---|---|---|---|---|---|
TEAC (mg trolox/mg protein) | 0.13 ± 0.05 a | 0.20 ± 0.04 b | 0.28 ± 0.08 c | 0.34 ± 0.03 c | <0.0001 |
SOD (U/mg protein) | 31.0 ± 13.7 a | 59.0 ± 12.7 b | 61.4 ± 25.5 b | 65.4 ± 16.5 b | 0.0005 |
MDA (nmol/mg protein) | 0.78 ± 0.12 b | 0.40 ± 0.05 a | 0.41 ± 0.08 a | 0.39 ± 0.04 a | 0.0002 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Davis, J.M.; Bailey, S.P. Possible mechanisms of central nervous system fatigue during exercise. Med. Sci. Sports Exerc. 1997, 29, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Lin, C.I.; Chiu, C.C.; Lin, Y.T.; Huang, W.K.; Huang, H.Y.; Huang, C.C. Chicken essence improves exercise performance and ameliorates physical fatigue. Nutrients 2014, 6, 2681–2696. [Google Scholar] [CrossRef] [PubMed]
- Kan, N.W.; Huang, W.C.; Lin, W.T.; Huang, C.Y.; Wen, K.C.; Chiang, H.M.; Huang, C.C.; Hsu, M.C. Hepatoprotective effects of Ixora parviflora extract against exhaustive exercise-induced oxidative stress in mice. Molecules 2013, 18, 10721–10732. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.L.; Liu, H.; Dakhil, S.R.; Linquist, B.; Sloan, J.A.; Nichols, C.R.; McGinn, T.W.; Stella, P.J.; Seeger, G.R.; Sood, A.; et al. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: A randomized, double-blind trial, N07C2. J. Natl. Cancer Inst. 2013, 105, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Antioxidant capacity: Which capacity and how to assess it? J. Berry Res. 2012, 1, 169–176. [Google Scholar]
- Dékány, M.; Nemeskéri, V.; Györe, I.; Harbula, I.; Malomsoki, J.; Pucsok, J. Antioxidant status of interval-trained athletes in various sports. Int. J. Sports Med. 2006, 27, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Barreto, T.O.; Cleto, L.S.; Gioda, C.R.; Silva, R.S.; Campi-Azevedo, A.C.; de Sousa-Franco, J.; de Magalhães, J.C.; Penaforte, C.L.; Pinto, K.M.; Cruz Jdos, S.; et al. Swim training does not protect mice from skeletal muscle oxidative damage following a maximum exercise test. Eur. J. Appl. Physiol. 2012, 112, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Sollanek, K.J.; Wiggs, M.P.; Demirel, H.A.; Smuder, A.J. Exercise-induced improvements in myocardial antioxidant capacity: The antioxidant players and cardioprotection. Free Radic. Res. 2014, 48, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Skenderi, K.P.; Tsironi, M.; Lazaropoulou, C.; Anastasiou, C.A.; Matalas, A.L.; Kanavaki, I.; Thalmann, M.; Goussetis, E.; Papassotiriou, I.; Chrousos, G.P. Changes in free radical generation and antioxidant capacity during ultramarathon foot race. Eur. J. Clin. Investig. 2008, 38, 159–165. [Google Scholar] [CrossRef]
- Bessa, A.; Oliveira, V.N.; de Agostini, G.G.; Oliveira, R.J.; Oliveira, A.C.; White, G.; Wells, G.; Teixeira, D.N.; Espindola, F.S. Exercise intensity and recovery: Biomarkers of injury, inflammation and oxidative stress. J. Strength Cond. Res. 2013. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Stavrinou, P.; Fatouros, I.G.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L.; Gan, K.H.; Wu, R.R.; Lin, C.N. Benzoquinones, a homoisoflavanone and other constitutents from Polygonatum alte-lobatum. Phytochemistry 1997, 44, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Huang, P.L.; Lu, C.M.; Wu, R.R.; Hu, W.P.; Wang, J.J. Polygonapholine, an alkaloid with a novel skeleton, isolated from Polygonatum alte-lobatum. Tetrahedron 1997, 53, 2025–2028. [Google Scholar] [CrossRef]
- Chiang, N.N.; Horng, C.T.; Chang, S.S.; Lee, C.F.; Su, C.Y.; Wang, H.Y.; Chen, F.A. Hypolipidemic activity of Polygonatum alte-lobatum Hayata extract in hamsters with hyperlipidemia induced by high-fat diet. Life Sci. J. 2013, 10, 939–942. [Google Scholar]
- Negi, P.S.; Jayaprakasha, G.K.; Jena, B.S. Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem. 2003, 80, 393–397. [Google Scholar] [CrossRef]
- Chen, F.A.; Lee, S.C.; Chao, H.R.; Fu, W.C.; Hsu, M.C.; Horng, C.T.; Wang, C.C.; Matsui, H.; Agoramoorthy, G. Effects of burdock extract preparation on gastric mucosal protection. Asian J. Chem. 2009, 21, 3015–3022. [Google Scholar]
- Horng, C.T.; Tsai, M.L.; Hsueh, C.W.; Hsu, S.Y.; Wang, H.Y.; Chen, F.A. Antioxidant activity of Arctium lappa L. and its effect on biochemical parameters in exercised rats. Asian J. Chem. 2013, 25, 1970–1974. [Google Scholar]
- Kenny, O.; Smyth, T.J.; Hewage, C.M.; Brunton, N.P. Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 2013, 141, 4295–4302. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Majdoub, H.; Ben Mansour, M.; Chaubet, F.; Roudesli, M.S.; Maaroufi, R.M. Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim. Biophys. Acta 2009, 1790, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.A.; Wu, A.B.; Shieh, P.; Kuo, D.H.; Hsieh, C.Y. Evaluation of the antioxidant activity of Ruellia Tuberosa. Food Chem. 2006, 94, 14–18. [Google Scholar] [CrossRef]
- Huang, C.C.; Lin, W.T.; Hsu, F.L.; Tsai, P.W.; Hou, C.C. Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises. Eur. J. Appl. Physiol. 2010, 108, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, D.; Singh, B.; Lall, A.M.; Haldar, C. Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: A correlative study with antihyperlipidemic and antioxidative activity. Eur. J. Pharm. Sci. 2011, 44, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Korivi, M.; Yang, H.T.; Huang, C.C.; Chaing, Y.Y.; Tsai, Y.C. Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. Chin. J. Physiol. 2014, 57, 198–208. [Google Scholar] [PubMed]
- Huang, C.C.; Huang, W.C.; Yang, S.C.; Chan, C.C.; Lin, W.T. Ganoderma tsugae hepatoprotection against exhaustive exercise-induced liver injury in rats. Molecules 2013, 18, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.E.; Huang, W.C.; Liao, C.C.; Chang, Y.K.; Kan, N.W.; Huang, C.C. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 2013, 18, 4689–4702. [Google Scholar] [CrossRef] [PubMed]
- Maclaren, D.P.; Gibson, H.; Parry-Billings, M.; Edwards, R.H. A review of metabolic and physiological factors in fatigue. Exerc. Sport Sci. Rev. 1989, 17, 29–66. [Google Scholar] [PubMed]
- Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.I.; Tsi, D.; Tan, A.C.; Wang, S.W.; Hsu, M.C. Effects of postexercise supplementation of chicken essence on the elimination of exercise-induced plasma lactate and ammonia. Chin. J. Physiol. 2005, 48, 187–192. [Google Scholar] [PubMed]
- Zhang, X.L.; Ren, F.; Huang, W.; Ding, R.T.; Zhou, Q.S.; Liu, X.W. Anti-fatigue activity of extracts of stem bark from Acanthopanax senticosus. Molecules 2011, 16, 28–37. [Google Scholar] [CrossRef]
- Sheng, R.; Xu, X.; Tang, Q.; Bian, D.; Li, Y.; Qian, C.; He, X.; Gao, X.; Pan, R.; Wang, C.; et al. Polysaccharide of Radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice. Evid. Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef]
- Tan, W.; Yu, K.Q.; Liu, Y.Y.; Ouyang, M.Z.; Yan, M.H.; Luo, R.; Zhao, X.S. Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata. Int. J. Biol. Macromol. 2012, 50, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Gao, T.; Wang, H.; Du, Y.; Li, J.; Li, C.; Wei, L.; Bi, H. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J. Ethnopharmacol. 2013, 150, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arabian J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Shan, X.; Zhou, J.; Ma, T.; Chai, Q. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. Int. J. Mol. Sci. 2011, 12, 1081–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.C.; Tsai, S.C.; Lin, W.T. Potential ergogenic effects of l-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp. Gerontol. 2008, 43, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Kasperska-Zajac, A.; Brzoza, Z.; Rogala, B.; Polaniak, R.; Birkner, E. Antioxidant enzyme activity and malondialdehyde concentration in the plasma and erythrocytes of patients with urticaria induced by nonsteroidal anti-inflammatory drugs. J. Investig. Allerg. Clin. Immunol. 2008, 18, 372–375. [Google Scholar]
- Fan, L.; Zhai, F.; Shi, D.; Qiao, X.; Fu, X.; Li, H. Evaluation of antioxidant properties and anti-fatigue effect of green tea polyphenols. Sci. Res. Essays 2011, 6, 2624–2629. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, C.-T.; Huang, J.-K.; Wang, H.-Y.; Huang, C.-C.; Chen, F.-A. Antioxidant and Antifatigue Activities of Polygonatum Alte-lobatum Hayata Rhizomes in Rats. Nutrients 2014, 6, 5327-5337. https://doi.org/10.3390/nu6115327
Horng C-T, Huang J-K, Wang H-Y, Huang C-C, Chen F-A. Antioxidant and Antifatigue Activities of Polygonatum Alte-lobatum Hayata Rhizomes in Rats. Nutrients. 2014; 6(11):5327-5337. https://doi.org/10.3390/nu6115327
Chicago/Turabian StyleHorng, Chi-Ting, Jon-Kway Huang, Hui-Yun Wang, Chi-Chang Huang, and Fu-An Chen. 2014. "Antioxidant and Antifatigue Activities of Polygonatum Alte-lobatum Hayata Rhizomes in Rats" Nutrients 6, no. 11: 5327-5337. https://doi.org/10.3390/nu6115327
APA StyleHorng, C.-T., Huang, J.-K., Wang, H.-Y., Huang, C.-C., & Chen, F.-A. (2014). Antioxidant and Antifatigue Activities of Polygonatum Alte-lobatum Hayata Rhizomes in Rats. Nutrients, 6(11), 5327-5337. https://doi.org/10.3390/nu6115327