Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do?
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Iron, Zinc, and Selenium
3.2. Folic Acid (Vitamin B9) and Vitamin B12
3.3. Vitamin A (Retinol)
3.4. Vitamin C
3.5. Vitamin E
3.6. Vitamin D
4. Discussion and Conclusions
5. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | Inflammatory Bowel Disease |
CD | Crohn’s Disease |
UC | Ulcerative Colitis |
ESPEN | European Society of Parenteral and Enteral Nutrition |
ECCO | European Crohn’s and Colitis Organization |
NASPGHAN | North American Society of Pediatric Gastroenterology |
SIGENP | Italian Society of Gastroenterology, Hepatology, and Nutrition |
ID | Iron Deficiency |
IDA | Iron Deficiency Anemia |
MMA | Methylmalonic Acid |
RA | Retinoic Acid |
RDA | Recommended Dietary Allowances |
References
- Ananthakrishnan, A.N.; Kaplan, G.G.; Ng, S.C. Changing Global Epidemiology of Inflammatory Bowel Diseases: Sustaining Health Care Delivery Into the 21st Century. Clin. Gastroenterol. Hepatol. 2020, 18, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, B.; Gokhale, R.; Cho, J. Clinical Aspects and Pathophysiology of Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2002, 15, 79–94. [Google Scholar] [CrossRef]
- Jamieson Paige, E.; Carbonero, F.; Stevens, J.F. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr. Res. Food Sci. 2023, 6, 100521. [Google Scholar] [CrossRef]
- Dixon, L.J.; Kabi, A.; Nickerson, K.P.; McDonald, C. Combinatorial effects of diet and genetics on inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Alperen, C.C.; Soydas, B.; Serin, E.; Erbayrak, M.; Savas, N.A.; Unler, G.K.; Meral, C.E.; Toprak, U.; Boyacioglu, A.S.; Dagli, U. Role of Environmental Risk Factors in the Etiology of Inflammatory Bowel Diseases: A Multicenter Study. Dig. Dis. Sci. 2024, 69, 2927–2936. [Google Scholar] [CrossRef]
- Meyer, A.; Chan, S.S.M.; Touvier, M.; Julia, C.; Tjønneland, A.; Kyrø, C.; Dahm, C.C.; Katzke, V.A.; Schulze, M.B.; Tumino, R.; et al. Inflammatory Potential of the Diet and Risk of Crohn’s Disease and Ulcerative Colitis. Aliment. Pharmacol. Ther. 2025, 61, 1032–1042. [Google Scholar] [CrossRef]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Rohatgi, P.; Lakshmi, P.V.M.; Varma, R.P.; et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: Prospective cohort study. BMJ 2021, 374, n1554. [Google Scholar] [CrossRef] [PubMed]
- Raoul, P.; Cintoni, M.; Palombaro, M.; Basso, L.; Rinninella, E.; Gasbarrini, A.; Mele, M.C. Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022, 10, 167. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W.; Crain, J.; Barrett, L.; Bernstein, C.N.; Bitton, A.; Chauhan, U.; Coward, S.; Fowler, S.; Ghia, J.E.; et al. Impact of COVID-19 & Inflammatory Bowel Disease in Canada: A Knowledge Translation Strategy. J. Can. Assoc. Gastroenterol. 2021, 4, S10–S19. [Google Scholar] [CrossRef]
- Baldassano, R.N.; Piccoli, D.A. Inflammatory bowel disease in children and adolescents. Gastroenterol. Clin. N. Am. 1999, 28, 445–458. [Google Scholar] [CrossRef]
- Kaplan, G.; Ng, S. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 2017, 152, 313. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; Cameron, F.; Henderson, P.; Kotze, P.G.; et al. Twenty-first century trends in the global epidemiology of pediatric onset inflammatory bowel disease: Systematic review. Gastroenterology 2022, 162, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.A.; Balart, M.T.; Serrano, P.; Armstrong, D.; Pinto-Sanchez, M.I. The complexities of approaching nutrition in inflammatory bowel disease: Current recommendations and future directions. Nutr. Rev. 2022, 80, 215–229. [Google Scholar] [CrossRef]
- Melton, S.L.; Day, A.S.; Bryant, R.V.; Halmos, E.P. Revolution in diet therapy for inflammatory bowel disease. JGH Open 2024, 8, e13097. [Google Scholar] [CrossRef]
- Sumi, R.; Nakajima, K.; Iijima, H.; Wasa, M.; Shinzaki, S.; Nezu, R.; Inoue, Y.; Ito, T. Influence of nutritional status on the therapeutic effect of infliximab in patients with Crohn’s disease. Surg. Today 2016, 46, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Ishige, T. Growth failure in pediatric onset inflammatory bowel disease: Mechanisms, epidemiology, and management. Transl. Pediatr. 2019, 8, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Sousa, U.H.; Reis, T.L.M.; Santana, G.O. Nutritional status as a predictor of hospitalization in inflammatory bowel disease: A review. World J. Gastrointest. Pharmacol. Ther. 2019, 10, 50–56. [Google Scholar] [CrossRef]
- Takaoka, A.; Sasaki, M.; Nakanishi, N.; Kurihara, M.; Ohi, A.; Bamba, S.; Andoh, A. Nutritional Screening and Clinical Outcome in Hospitalized Patients with Crohn’s Disease. Ann. Nutr. Metab. 2017, 71, 266–272. [Google Scholar] [CrossRef]
- Pulley, J.; Todd, A.; Flatley, C.; Begun, J. Malnutrition and quality of life among adult inflammatory bowel disease patients. J. Gastroenterol. Hepatol. 2020, 4, 454–460. [Google Scholar] [CrossRef]
- Brown, S.C.; Whelan, K.; Frampton, C.; Wall, C.L.; Gearry, R.B.; Day, A.S. Food-Related Quality of Life in Children and Adolescents with Crohn’s Disease. Inflamm. Bowel Dis. 2022, 281, 838–1843. [Google Scholar] [CrossRef]
- Day, A.S.; Ledder, O.; Leach, S.T.; Lemberg, D.A. Crohn’s and colitis in children and adolescents. World J. Gastroenterol. 2012, 18, 5862–5869. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, M.; Guariso, G. Crohn’s disease and growth deficiency in children and adolescents. World J. Gastroenterol. 2014, 20, 13219–13233. [Google Scholar] [CrossRef] [PubMed]
- El Matary, W. Transition of children with inflammatory bowel disease: Big task, little evidence. World J. Gastroenterol. 2009, 15, 3744–3747. [Google Scholar] [CrossRef] [PubMed]
- Gerasimidis, K.; McGrogan, P.; Edwards, C.A. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J. Hum. Nutr. Diet. 2011, 24, 313–326. [Google Scholar] [CrossRef]
- Massironi, S.; Rossi, R.E.; Cavalcoli, F.A.; Della Valle, S.; Fraquelli, M.; Conte, D. Nutritional deficiencies in inflammatory bowel disease: Therapeutic approaches. Clin. Nutr. 2013, 32, 904–910. [Google Scholar] [CrossRef]
- Sikora, S.K.; Spady, D.; Prosser, C.; El-Matary, W. Trace elements and vitamins at diagnosis in pediatric-onset inflammatory bowel disease. Clin. Pediatr. 2011, 50, 488–492. [Google Scholar] [CrossRef]
- Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; de Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Ockenga, J.; Eshraghian, A.; Barazzoni, R.; Busetto, L.; Campmans-Kuijpers, M.; Cardinale, V.; Chermesh, I.; Kani, H.T.; Khannoussi, W.; et al. Practical guideline on obesity care in patients with gastrointestinal and liver diseases-Joint ESPEN/UEG guideline. Clin. Nutr. 2023, 42, 987–1024. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, C.; Dong, W. Adjunctive Therapeutic Effects of Micronutrient Supplementation in Inflammatory Bowel Disease. Front. Immunol. 2023, 14, 1143123. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Ferenc, K.; Sokal-Dembowska, A.; Filip, R. Nutritional Support: The Use of Antioxidants in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 4390. [Google Scholar] [CrossRef]
- Moustarah, F.; Daley, S.F. Dietary Iron. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK54096 (accessed on 8 January 2024).
- Herrera-deGuise, C.; Casellas, F.; Robles, V.; Navarro, E.; Borruel, N. Iron Deficiency in the Absence of Anemia Impairs the Perception of Health-Related Quality of Life of Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases a Narrative Review. Nutrients 2021, 13, 4008. [Google Scholar] [CrossRef] [PubMed]
- Shah, Y.; Patel, D.; Khan, N. Iron deficiency anemia in IBD: An overlooked comorbidity. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Ocansey, D.K.W.; Yuan, J.; Wei, Z.; Mao, F.; Zhang, Z. Role of ferroptosis in the pathogenesis and as a therapeutic target of inflammatory bowel disease. Int. J. Mol. Med. 2023, 51, 53. [Google Scholar] [CrossRef]
- Xu, S.; He, Y.; Lin, L.; Chen, P.; Chen, M.; Zhang, S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021, 12, 289. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Ma, J.; Liu, J.; Wang, F.; Tang, X. Inhibiting Ferroptosis: A Novel Approach for Ulcerative Colitis Therapeutics. Oxid. Med. Cell Longev. 2022, 26, 9678625. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. Available online: https://iris.who.int/handle/10665/85839 (accessed on 17 April 2025).
- Martinelli, M.; Fioretti, M.T.; Aloi, M.; Alvisi, P.; Arrigo, S.; Banzato, C.; Bramuzzo, M.; Campanozzi, A.; Civitelli, F.; Knafelz, D.; et al. Diagnosis and management of anemia in pediatric inflammatory bowel diseases: Clinical practice guidelines on behalf of the SIGENP IBD Working group. Dig. Liver Dis. 2024, 56, 1257–1269. [Google Scholar] [CrossRef]
- Song, S.M.; Kim, Y.; Oh, S.H. Nutritional status and growth in Korean children with Crohn’s disease: A single-center study. Gut Liver 2014, 8, 500–507. [Google Scholar] [CrossRef]
- Wiskin, A.E.; Fleming, B.J.; Wootton, S.A.; Beattie, R.M. Anaemia and iron deficiency in chil dren with inflammatory bowel disease. J. Crohns Colitis 2012, 6, 687–691. [Google Scholar] [CrossRef]
- Rempel, J.; Grover, K.; El-Matary, W. Micronutrient deficiencies and anemia in children with inflammatory bowel disease. Nutrients 2021, 13, 236. [Google Scholar] [CrossRef]
- Smith, J.; Jacobson-Kelly, A.; Donegan, A.; Boyle, B.; Maltz, R.M.; Michel, H.K.; Dotson, J.L. Diagnosis and Treatment of Iron Deficiency and Anemia in Youth with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 1, 313–318. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Distante, M.; Veraldi, S.; Tarani, F.; Musto, F.; Aloi, M. Natural History of Anemia and Efficacy and Safety of Oral Iron Therapy in Children Newly Diagnosed with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 1, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Goodhand, J.R.; Kamperidis, N.; Rao, A.; Laskaratos, F.; McDermott, A.; Wahed, M.; Naik, S.; Croft, N.M.; Lindsay, J.O.; Sanderson, I.R.; et al. Prevalence and management of anemia in children, adolescents, and adults with inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 513–519. [Google Scholar] [CrossRef]
- Oustamanolakis, P.; Koutroubakis, I.E.; Messaritakis, I.; Malliaraki, N.; Sfiridaki, A.; Kouromalis, E.A. Serum hepcidin and prohepcidin concentrations in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2011, 23, 262–268. [Google Scholar] [CrossRef]
- Revel-Vilk, S.; Tamary, H.; Broide, E.; Zoldan, M.; Dinari, G.; Zahavi, I.; Yaniv, I.; Shamir, R. Serum transferrin receptor in children and adolescents with inflammatory bowel disease. Eur. J. Pediatr. 2000, 159, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Marderfeld, L.; Davidson, K.; Mozer-Glassberg, Y.; Poraz, I.; Silbermintz, A.; Shamir, R. Food intake adequacy in children and adolescents with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 437–444. [Google Scholar] [CrossRef]
- Gatti, S.; Vallorani, M.; Quattrini, S.; Aloi, M.; Bramuzzo, M.; Felici, E.; Zuin, G.; Catassi, G.N.; Grazian, F.; Ciacchini, B.; et al. Dietary habits in Italian children with inflammatory bowel disease: A case-control multicenter study. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 602–609. [Google Scholar] [CrossRef]
- Goyal, R.K.; Grossman, A. Anemia in Children with Inflammatory Bowel Disease: A Position Paper by the IBD Committee of the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohn’s Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Vulpe, C.D.; Anderson, G.J. Intestinal iron absorption. J. Trace Elem. Med. Biol. 2012, 26, 115–119. [Google Scholar] [CrossRef]
- Goldberg, N.D. Iron deficiency anemia in patients with inflammatory bowel disease. Clin. Exp. Gastroenterol. 2013, 4, 61–70. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Ainsworth, M.; Coskun, M.; Weiss, G. Management of Iron-Deficiency Anemia in Inflammatory Bowel Disease A Systematic Review. Medicine 2015, 12, e963. [Google Scholar] [CrossRef]
- Auerbach, M.; Adamson, J.W. How we diagnose and treat iron deficiency anemia. Am. J. Hematol. 2016, 91, 31–38. [Google Scholar] [CrossRef]
- Ganzoni, A.M. Intravenous iron-dextran: Therapeutic and experimental possibilities. Schweiz. Med. Wochenschr. 1970, 100, 301–303. [Google Scholar] [PubMed]
- Maxfield, L.; Shukla, S.; Crane, J.S. Zinc Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493231 (accessed on 20 February 2025).
- Lansdown, A.B.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Agren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair. Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef]
- Shreenath, A.P.; Hashmi, M.F.; Dooley, J. Selenium Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/ (accessed on 25 February 2025).
- Khan, K.M.; Jialal, I. Folic Acid Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535377/ (accessed on 25 February 2025).
- Ankar, A.; Kumar, A. Vitamin B12 Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441923 (accessed on 25 February 2025).
- Hodge, C.; Taylor, C. Vitamin A Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567744/ (accessed on 2 January 2023).
- Miller, M.; Humphrey, J.; Johnson, E.; Marinda, E.; Brookmeyer, R.; Katz, J. Why do children become vitamin A deficient? J. Nutr. 2002, 132, 2867S–2880S. [Google Scholar] [CrossRef] [PubMed]
- McEldrew, E.P.; Lopez, M.J.; Milstein, H. Vitamin A. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482362 (accessed on 19 February 2025).
- Abdullah, M.; Jamil, R.T.; Attia, F.N. Vitamin C (Ascorbic Acid). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499877/ (accessed on 1 May 2023).
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols-bioactive dietary compounds, what is certain, what is doubt. Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Kemnic, T.R.; Coleman, M. Vitamin E Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519051 (accessed on 25 February 2025).
- Kaur, J.; Khare, S.; Sizar, O.; Givler, A. Vitamin D Deficiency. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532266/ (accessed on 15 February 2025).
- Reddy, P.; Jialal, I. Biochemistry, Fat Soluble Vitamins. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534869/ (accessed on 19 September 2022).
- Yilmaz, B.; Li, H. Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef]
- Liu, H.; Lu, N.; Cui, M.; Zhang, M. Role of epigenetic modifications mediated by vitamins and trace elements in inflammatory bowel disease. Epigenomics 2023, 15, 839–843. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, X.; Lu, S.; Du, J.; Long, Y.; Zhu, Y.; Qin, H. Engineered procyanidin-Fe nanoparticle alleviates intestinal inflammation through scavenging ROS and altering gut microbiome in colitis mice. Front. Chem. 2023, 11, 1089775. [Google Scholar] [CrossRef]
- Fritz, J.; Walia, C.; Elkadri, A.; Pipkorn, R.; Dunn, R.K.; Sieracki, R.; Goday, P.S.; Cabrera, J.M. A Systematic Review of Micronutrient Deficiencies in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Sila, A.; Castellana, F.; Bringiotti, R.; Curlo, M.; De Pergola, G.; De Nucci, S.; Giannelli, G.; Mastronardi, M.; Sardone, R. Prevalence of Zinc Deficiency in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4052. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Arai, K.; Kudo, T.; Nambu, R.; Tajiri, H.; Aomatsu, T.; Abe, N.; Kakiuchi, T.; Hashimoto, K.; Sogo, T. Serum Zinc and Selenium in Children with Inflammatory Bowel Disease: A Multicenter Study in Japan. Dig. Dis. Sci. 2022, 67, 2485–2491. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Wilson, A.; Church, B.B.; Ehman, S.; Roberts, W.L.; McMillin, G.A. Pediatric reference intervals for serum copper and zinc. Clin. Chim. Acta 2012, 22, 612–615. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S.; Hosseini-Esfahani, F.; Syedmoradi, L.; Azizi, F. Pediatric reference values for serum zinc concentration in Iranian subjects and an assessment of their dietary zinc intakes. Clin. Biochem. 2012, 45, 1254–1256. [Google Scholar] [CrossRef]
- Alves, C.X.; de Brito, N.J.N.; Vermeulen, K.M.; Lopes, M.M.G.D.; França, M.C.; Bruno, S.S.; Almeida, M.D.G.; Brandão-Neto, J. Serum zinc reference intervals and its relationship with dietary, functional, and biochemical indicators in 6- to 9-year-old healthy children. Food Nutr. Res. 2016, 60, 30157. [Google Scholar] [CrossRef]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99, S14–S23. [Google Scholar] [CrossRef]
- Siva, S.; Rubin, D.T.; Gulotta, G.; Wroblewski, K.; Pekow, J. Zinc Deficiency is Associated with Poor Clinical Outcomes in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 152–157. [Google Scholar] [CrossRef]
- Sturniolo, G.C.; Di Leo, V.; Ferronato, A.; D’Odorico, A.; D’Incà, R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm. Bowel Dis. 2001, 7, 94–98. [Google Scholar] [CrossRef]
- Sakurai, K.; Furukawa, S.; Katsurada, T.; Otagiri, S.; Yamanashi, K.; Nagashima, K.; Onishi, R.; Yagisawa, K.; Nishimura, H.; Ito, T.; et al. Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: A retrospective observational two-center study. Intest. Res. 2022, 20, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, M.; Saruta, M.; Saijo, H.; Mitobe, J.; Arihiro, S.; Matsuoka, M.; Kato, T.; Ikegami, M.; Tajiri, H. Efficacy of zinc-carnosine chelate compound, Polaprezinc, enemas in patients with ulcerative colitis. Scand. J. Gastroenterol. 2014, 49, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Griffin, I.J.; Kim, S.C.; Hicks, P.D.; Liang, L.K.; Abrams, S.A. Zinc metabolism in adolescents with Crohn’s disease. Pediatr. Res. 2004, 56, 235–239. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, T.; Wang, W.; Jing, F.; Sheng, J. Selenium deficiency in inflammatory bowel disease: A comprehensive meta-analysis. Heliyon 2024, 10, e40139. [Google Scholar] [CrossRef]
- Gîlcă-Blanariu, G.E.; Diaconescu, S.; Ciocoiu, M.; Stefanescu, G. New insights into the role of trace elements in IBD. Biomed. Res. Int. 2018, 2018, 1813047. [Google Scholar] [CrossRef]
- Lockitch, G. Selenium: Clinical signifcance and analytical concepts. Crit. Rev. Clin. Lab. Sci. 1989, 27, 483–541. [Google Scholar] [CrossRef]
- Han, Y.M.; Yoon, H.; Lim, S.; Sung, M.K.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. Risk factors for vitamin D, zinc, and selenium deficiencies in Korean patients with inflammatory bowel disease. Gut Liver 2017, 11, 363–369. [Google Scholar] [CrossRef]
- Castro Aguilar-Tablada, T.; Navarro-Alarcón, M.; Quesada Granados, J.; Samaniego Sanchez, C.; Rufian-Henare, J.A.; Nogueras-Lopez, F. Ulcerative Colitis and Crohn’s disease are associated with decreased serum selenium concentrations and increased cardiovascular risk. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.S.; Liu, X.; Cui, W.; Li, D. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis. Nutrients 2017, 9, 382. [Google Scholar] [CrossRef]
- Jølving, L.R.; Zegers, F.D.; Lund, K.; Wod, M.; Nielsen, J.; Qvist, N.; Nielsen, R.G.; Nørgård, B.M. Children and Adolescents Diagnosed with Inflammatory Bowel Disease Are at Increased Risk of Developing Diseases with a Possible Autoimmune Pathogenesis. Inflamm. Bowel Dis. 2025, 6, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. Euro-pean Society Paedi-atric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef]
- Yakut, M.; Ustun, Y.; Kabacam, G.; Soykan, I. Serum vitamin B12 and folate status in patients with inflammatory bowel diseases. Eur. J. Intern. Med. 2010, 21, 320–323. [Google Scholar] [CrossRef]
- Heyman, M.B.; Garnett, E.A.; Shaikh, N.; Huen, K.; Jose, F.A.; Harmatz, P.; Winter, H.S.; Baldassano, R.N.; Cohen, S.A.; Gold, B.D.; et al. Folate concentrations in pediatric patients with newly diagnosed inflammatory bowel disease. Am. J. Clin. Nutr. 2009, 89, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Al Mutairi, F. Hyperhomocysteinemia: Clinical Insights. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520962230. [Google Scholar] [CrossRef]
- Okada, A.; Koike, H.; Nakamura, T.; Watanabe, H.; Sobue, G. Slowly progressive folate-deficiency myelopathy: Report of a case. J. Neurol. Sci. 2014, 336, 273–275. [Google Scholar] [CrossRef]
- Reynolds, E.H. The neurology of folic acid deficiency. Hand. Clin. Neurol. 2014, 120, 927–943. [Google Scholar]
- Cordaro, M.; Siracusa, R.; Fusco, R.; Cuzzocrea, S.; Di Paola, R.; Impellizzeri, D. Involvements of Hyperhomocysteinemia in Neurological Disorders. Metabolites 2021, 11, 37. [Google Scholar] [CrossRef]
- Cammarota, T.; Ribaldone, D.G.; Resegotti, A.; Repici, A.; Danese, S.; Fiorino, G.; Sarno, A.; Robotti, D.; Debani, P.; Bonenti, G.; et al. Role of bowel ultrasound as a predictor of surgical recurrence of Crohn’s disease. Scand. J. Gastroenterol. 2013, 48, 552–555. [Google Scholar] [CrossRef]
- Battat, R.; Kopylov, U.; Szilagyi, A.; Saxena, A.; Rosenblatt, D.S.; Warner, M.; Bessissow, T.; Seidman, E.; Bitton, A. Vitamin B12 deficiency in inflammatory bowel disease: Prevalence, risk factors, evaluation, and management. Inflamm. Bowel Dis. 2014, 20, 1120–1128. [Google Scholar] [CrossRef]
- Costa, C.O.; Carrilho, F.J.; Nunes, V.S.; Sipahi, A.M.; Rodrigues, M. A snapshot of the nutritional status of Crohn’s disease among adolescents in Brazil: A prospective cross-sectional study. BMC Gastroenterol. 2015, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.; Mark, A.G.; Rinawi, F.; Shamir, R.; Assa, A. Micronutrient Deficiencies in Chil-dren with Inflammatory Bowel Diseases. Nutr. Clin. Pract. 2020, 35, 315–322. [Google Scholar] [CrossRef]
- Tugba-Kartal, A.; Cagla-Mutlu, Z. Comparison of Sublingual and Intramuscular Administration of Vitamin B12 for the Treatment of Vitamin B12 Deficiency in Children. Rev. Investig. Clin. Organo Hosp. Enferm. Nutr. 2020, 72, 380–385. [Google Scholar] [CrossRef]
- Erkelens, M.N.; Mebius, R.E. Retinoic Acid and Immune Homeostasis: A Balancing Act. Trend Immunol. 2017, 38, 168–180. [Google Scholar] [CrossRef]
- Soares-Mota, M.; Silva, T.A.; Gomes, L.M.; Pinto, M.A.S.; Mendonça, L.M.C.; Farias, M.L.F.; Nunes, T.; Ramalho, A.; Zaltman, C. High prevalence of vitamin A deficiency in Crohn’s disease patients according to serum retinol levels and the relative dose-response test. World J. Gastroenterol. 2015, 21, 1614–1620. [Google Scholar] [CrossRef]
- Hashemi, J.; Asadi, J.; Amiriani, T.; Besharat, S.; Roshandel, G.R.; Joshaghani, H.R. Serum vitamins A and E deficiencies in patients with inflammatory bowel disease. Saudi Med. J. 2013, 34, 432–434. [Google Scholar] [PubMed]
- Alkhouri, R.H.; Hashmi, H.; Baker, R.D.; Gelfond, D.; Baker, S.S. Vitamin and mineral status in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Bousvaros, A.; Zurakowski, D.; Duggan, C.; Law, T.; Rifai, N.; Goldberg, N.E.; Leichtner, A.M. Vitamins A and E serum levels in children and young adults with inflammatory bowel disease: Effect of disease activity. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 129–135. [Google Scholar]
- Ghishan, F.K.; Kiela, P.R. Vitamins and Minerals in Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2017, 46, 797–808. [Google Scholar] [CrossRef]
- Feng, R.; Fang, L.; Cheng, Y.; He, X.; Jiang, W.; Dong, R.; Shi, H.; Jiang, D.; Sun, L.; Wang, D. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci. Rep. 2015, 5, 10131. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Leger, D. Scurvy: Reemergence of nutritional deficiencies. Can. Fam. Physician. 2008, 54, 1403–1406. [Google Scholar] [PubMed]
- Gordon, B.L.; Galati, J.S.; Yang, S.; Longman, R.S.; Lukin, D.; Scherl, E.J.; Battat, R. Prevalence and factors associated with vitamin C deficiency in inflammatory bowel disease. World J. Gastroenterol. 2022, 28, 4834–4845. [Google Scholar] [CrossRef]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.B.; Hébuterne, X.; Schneider, S.M. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar]
- Abraham, A.; Kattoor, A.J.; Saldeen, T.; Mehta, J.L. Vitamin E and its anticancer effects. Crit. Rev. Food Sci. 2019, 59, 2831–2838. [Google Scholar] [CrossRef]
- Mohd Zaffarin, A.S.; Ng, S.F.; Ng, M.H.; Hassan, H.; Alias, E. Pharmacology and pharmacokinetics of vitamin E: Nanoformulations to enhance bioavailability. Int. J. Nanomed. 2020, 15, 9961–9974. [Google Scholar] [CrossRef]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Tpi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: A randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 373–381. [Google Scholar] [CrossRef]
- Saito, Y. Lipid peroxidation products as a mediator of toxicity and adaptive re-sponse-the regulatory role of selenoprotein and vitamin E. Arch. Biochem. Biophys. 2021, 703, 108840. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-enriched diets decrease postprandial lipid peroxidation and increase total antioxidant capacity in adults at-risk for cardiovascular disease. Nutr. Res. 2021, 93, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Bitiren, M.; Karakilcik, A.Z.; Zerin, M.; Ozardali, I.; Selek, S.; Nazligül, Y.; Ozgonul, A.; Musa, D.; Uzunkoy, A. Protective effects of selenium and vitamin E combination on experimental colitis in blood plasma and colon of rats. Biol. Trace Elem. Res. 2010, 136, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Nakatsu, C.H.; Jones-Hall, Y.; Kozik, A.; Jiang, Q. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic. Biol. Med. 2021, 163, 180–189. [Google Scholar] [CrossRef]
- Fan, X.; Yin, J.; Yin, J.; Weng, X.; Ding, R. Comparison of the anti-inflammatory effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium-induced ulcerative colitis. Exp. Ther. Med. 2023, 25, 98. [Google Scholar] [CrossRef]
- Péter, S.; Friedel, A.; Roos, F.F.; Wyss, A.; Eggersdorfer, M.; Hoffmann, K.; Weber, P. A systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. Int. J. Vitam. Nutr. Res. 2015, 85, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ruan, X.; Yuan, S.; Deng, M.; Zhang, H.; Sun, J.; Yu, L.; Satsangi, J.; Larsson, S.C.; Therdoratou, E.; et al. Antioxidants, minerals and vitamins in relation to Crohn’s disease and ulcerative colitis: A mendelian randomization study. Aliment. Pharmacol. Ther. 2023, 57, 399–408. [Google Scholar] [CrossRef]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Fabisiak, N.; Fabisiak, A.; Watala, C.; Fichna, J. Fat-soluble vitamin deficiencies and in-flammatory bowel disease: Systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 878–889. [Google Scholar] [CrossRef]
- Vernia, F.; Valvano, M.; Longo, S.; Cesaro, N.; Viscido, A.; Latella, G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients 2022, 14, 269. [Google Scholar] [CrossRef]
- Giustina, A.; Di Filippo, L.; Allora, A.; Bikle, D.D.; Cavestro, G.M.; Feldman, D.; Latella, G.; Minisola, S.; Napoli, N.; Trasciatti, S.; et al. Vitamin D and Malabsorptive Gastrointestinal Conditions: A Bidirectional Relationship? Rev. Endocr. Metab. Disord. 2023, 24, 121–138. [Google Scholar] [CrossRef]
- Del Pinto, R.; Ferri, C.; Cominelli, F. Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int. J. Mol. Sci. 2017, 18, 2360. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Anouti, F.A.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, V.; White, J.H. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol. Cell. Endocrinol. 2017, 453, 68–78. [Google Scholar] [CrossRef]
- Yamamoto, E.A.; Jørgensen, T.N. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front. Immunol. 2020, 10, 3141. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid. Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef]
- Holik, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Charoenngam, N.; Shirvani, A.; Kalajian, T.A.; Song, A.; Holick, M.F. The Effect of Various Doses of Oral Vitamin D3 Supplementation on Gut Microbiota in Healthy Adults: A Randomized, Double-blinded, Dose-response Study. Anticancer. Res. 2020, 40, 551–556. [Google Scholar] [CrossRef]
- El-Matary, W.; Sikora, S.; Spady, D. Bone mineral density, vitamin D, and disease activity in children newly diagnosed with inflammatory bowel disease. Dig. Dis. Sci. 2011, 56, 825–829. [Google Scholar] [CrossRef]
- Sledzińska, K.; Landowski, P.; Żmijewski, M.A.; Kamińska, B.; Kowalski, K.; Liberek, A. Diet, Sun, Physical Activity and Vitamin D Status in Children with Inflammatory Bowel Disease. Nutrients 2022, 28, 1029. [Google Scholar] [CrossRef]
- Jasielska, M.; Grzybowska-Chlebowczyk, U. Hypocalcemia and Vitamin D Deficiency in Children with Inflammatory Bowel Diseases and Lactose Intolerance. Nutrients 2021, 13, 2583. [Google Scholar] [CrossRef] [PubMed]
- Pappa, H.M.; Gordon, C.M.; Saslowsky, T.M.; Zholudev, A.; Horr, B.; Shih, M.; Richard, J.; Grand, R.J. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics 2006, 118, 1950–1961. [Google Scholar] [CrossRef] [PubMed]
- Wellington, V.N.A.; Sundaram, V.L.; Singh, S.; Sundaram, U. Dietary Supplementation with Vitamin D, Fish Oil or Resveratrol Modulates the Gut Microbiome in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 23, 206. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.A.; Rodney Harris, R.M.; Lucas, R.M. Low Sun Exposure and Vitamin D Deficiency as Risk Factors for Inflammatory Bowel Disease, with a Focus on Childhood Onset. Photochem. Photobiol. 2019, 95, 105–118. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: Recommendations for diagnosis-The Porto criteria. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N. Vitamin D and inflammatory bowel disease. Gastroenterol. Hepatol. 2016, 12, 513–515. [Google Scholar]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef]
- Varkal, M.A.; Karabocuoglu, M. Efficiency of the sublingual route in treating B12 deficiency in infants. Int. J. Vitam. Nutr. Res. 2023, 93, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194. [Google Scholar] [CrossRef] [PubMed]
- Piechota-Polanczyk, A.; Fichna, J. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Gubatan, J.; Chou, N.D.; Nielsen, O.H.; Moss, A.C. Systematic review with meta-analysis: Association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 50, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- van der Post, S.; Jabbar, K.S.; Birchenough, G.; Arike, L.; Akhtar, N.; Sjovall, H.; Johansson, M.E.; Hansson, G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019, 68, 2142–2151. [Google Scholar] [CrossRef]
- Hlavaty, T.; Krajcovicova, A.; Payer, J. Vitamin D Therapy in Inflammatory Bowel Diseases: Who, in What Form, and How Much? J. Crohn’s Colitis 2015, 9, 198–209. [Google Scholar] [CrossRef]
Micronutrient | References | Clinical Relevance of Deficiency | Laboratory Parameters/Definition | Monitoring | Treatment | Recommended Intake *— Dietary Sources |
---|---|---|---|---|---|---|
Iron | [31,38,39,55,56] | Pallor, asthenia, poor growth, hair loss, sleep disorders, reduced cognitive and physical performance | Hb < 2 SD for age (WHO definition) and ↓ MCV, ↓ SF (<30 ng/mL) and ↓ TS (<20%) or SF 30–100 ng/mL in active disease | Iron status at diagnosis, every 3 months in active disease, every 6–12 months in patients in remission or mild disease | Oral (ferrous salts): 3–6 mg/kg, in inactive/mild disease IV (ferric carboxy maltose): dosage according to Ganzoni formula, # in active IBD and/or moderate-to-severe anemia or previous intolerance to oral iron | PRI: 1–6 years M-F = 7 mg/day 7–11 years M-F = 11 mg/day 12–17 years M = 11 mg/day 12–17 years F = 13 mg/day Sources: Heme-iron: meat, fish, and seafood; non-heme iron: cereals, legumes, and dark green vegetables |
Zinc | [49,57,58] | Impaired growth, dermatitis, impaired vision and taste, compromised immune function | Serum zinc < 70 μg/dL | At diagnosis and annually for patients with CD. In specific situations: ileostomy, surgery, elevated intestinal losses. | Dosage not established for IBD children. A short course (2–4 weeks) of 20–40 mg of elemental zinc is generally sufficient. | PRI: 1–3 years M-F = 4.3 mg/day 4–6 years M-F = 5.5 mg/day 7–10 years M-F = 7.4 mg/day 11–14 years M-F = 10.7 mg/day 15–17 years M = 14.2 mg/day 15–17 years F = 11.9 mg/day Sources: Meat, fish, legumes, nuts. Excess of phytates or oxalates leads to zinc deficiency |
Selenium | [27,59,60] | Muscle pain, weakness, pallor, cardiomiopathy | Serum selenium < 70 μg/L | Not routinely recommended | Dosage not established | AI: 1–3 years M-F = 15 μg/day 4–6 years M-F = 20 μg/day 7–10 years M-F = 35 μg/day 11–14 years M-F = 55 μg/day 15–17 years M-F = 70 μg/day Sources: plant-based foods (Brazil nuts, green vegetables, shiitake and button mushrooms, and various kinds of seeds) |
Folate | [39,60] | Pallor, increased risk of osteoporosis and thrombosis (adults); possible impact on GI inflammation of IBD and growth. | ↓ Hb, ↑ MCV, ↓ serum folate (<2 ng/mL) and RBC folate ↑ homocysteine | Annually in cases with active ileal disease, prior surgery, or on chronic therapy with sulfasalazine, thiopurines, or methotrexate. In every case of macrocytic anemia. | Dosage not established: a daily dose of 1 mg or a weekly dose of 5 mg appears to be sufficient. 5 mg/week orally in all children on MTX treatment. | PRI: 1–3 years M-F = 120 μg DFE/day 4–6 years M-F = 110 μg DFE/day 7–10 years M-F = 200 μg DFE/day 11–14 years M-F = 270 μg DFE/day 15–17 years M-F = 330 μg DFE/day Sources: Lentils, beans, vegetables, leafy greens, and citrus fruits |
Vitamin B12 | [39,61] | Pallor, glossitis, oral ulcers, neurological symptoms | ↓ Hb, ↑ MCV, ↓ vitamin B12 (<200 pg/mL), ↑ MMA and homocysteine | Annually in cases with active ileal disease, prior surgery, UC with ileal pouch or anastomosis, patients on chronic therapy with sulfasalazine, thiopurines, or methotrexate. In every case of macrocytic anemia. | IM B12 therapy in patients with macrocytic anemia without clinical involvement: 250–1000 μg three times a week for 2 weeks, followed by 250 μg weekly until blood count is normal, and then 1 μg every 3 months | AI: 1–6 years M-F = 1.5 μg/day 7–10 years M-F = 2.5 μg/day 11–14 years M-F = 3.5 μg/day 15–17 years M-F = 4 μg/day Sources: Fish, tuna, shellfish, beef, liver, poultry, eggs, and dairy products. |
Vitamin A | [62,63,64] | Night blindness and xerophtalmia, increased frequency of infections, and development of xeroderma and phrynoderma | Serum vitamin A (retinol) < 20 μg/dL | Not routinely recommended in the absence of chronic liver disease | Not established nor recommended supplementation, except for chronic liver disease | PRI: 1–3 years M-F = 250 μg RE/day 4–6 years M-F = 300 μg RE/day 7–10 years M-F = 400 μg RE/day 11–14 years M-F = 600 μg RE/day 15–17 years M = 750 μg RE/day 15–17 years F = 650 μg RE/day Sources: dark leafy greens, orange-colored vegetables, milk products, liver, and fish. |
Vitamin C | [57,65] | Corkscrew hairs, perifollicular hemorrhages, gingival bleeding, fractures, bone reabsorption areas | Serum vitamin C < 0.2 mg/dL | Not routinely recommended | No specific recommendations for IBD 300 mg/day in case of deficiency | PRI: 1–3 years M-F = 15 mg/day 4–6 years M-F = 30 mg/day 7–10 years M-F = 45 mg/day 11–14 years M-F = 70 mg/day 15–17 years M = 100 mg/day 15–17 years F = 90 mg/day Sources: fruits and vegetables (citrus fruits, potatoes, spinach, broccoli, red peppers, strawberries, and tomatoes) |
Vitamin E | [66,67] | Neurological and ocular symptoms (hyporeflexia, decreased night vision, loss/decreased vibratory sense; however, limb and truncal ataxia, muscle weakness) and cardiac arrhythmias. In IBD: increased oxidative stress and consequent inflammation. | Serum vitamin E < 5 mg/L | Not routinely recommended in the absence of chronic liver disease | Not established nor recommended supplementation, except for chronic liver disease | AI: 1–2 years M-F = 6 mg/day 3–9 years M-F = 9 mg/day 10–17 years M = 13 mg/day 10–17 years F = 11 mg/day Sources: Tocopherols: vegetal oils (soybean, corn olive, canola flaxseed, walnut); Tocotrienols: palm and rice bran oil and grains (wheat germ, oats, rice, and corn) |
Vitamin D | [27,68,69] | Malnutrition and delays in growth and puberty; fractures and reduced bone density | Serum vitamin D < 20 ng/mL (or 50 nmol/L) | Routinely recommended in all patients with IBD, at diagnosis and follow-ups | Vitamin D supplementation in IBD children with deficiency. Dosage: standard weight-based dose. High doses (i.e., ≥2000 IU daily or 50,000 IU weekly) and long-term treatment may be necessary to maintain sufficiency. | AI: 1–17 years M-F = 15 μg/day Sources: fatty fish livers, dairy products, fortified food |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeazzi, T.; Quattrini, S.; Lionetti, E.; Gatti, S. Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients 2025, 17, 1425. https://doi.org/10.3390/nu17091425
Galeazzi T, Quattrini S, Lionetti E, Gatti S. Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients. 2025; 17(9):1425. https://doi.org/10.3390/nu17091425
Chicago/Turabian StyleGaleazzi, Tiziana, Sara Quattrini, Elena Lionetti, and Simona Gatti. 2025. "Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do?" Nutrients 17, no. 9: 1425. https://doi.org/10.3390/nu17091425
APA StyleGaleazzi, T., Quattrini, S., Lionetti, E., & Gatti, S. (2025). Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients, 17(9), 1425. https://doi.org/10.3390/nu17091425