Prospective Associations of Dietary Antioxidant Vitamin Intake and 8-Year Risk of Elevated Serum C-Reactive Protein Levels
Abstract
:1. Introduction
2. Participants and Methods
2.1. Participants
2.2. Outcome Definition
2.3. Dietary Antioxidant Vitamin Consumption
2.4. Potential Confounding Variables
2.5. Statistical Analysis
3. Results
3.1. Study Participants Characteristics
3.2. Associations Between Dietary Antioxidant Vitamin Intake and the Risk of Elevated hsCRP Concentrations (>3 mg/L)
3.3. Associations Between DRI-Based Antioxidant Vitamin Intake and the Risk of Elevated hsCRP Concentrations (>3 mg/L)
3.4. Stepwise Analysis of Associations Between Risk-Related Variables and the Risk of Elevated hsCRP Concentrations (>3 mg/L)
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, B.; Gleeson, M.; Cripps, A.W. C-reactive protein: A critical review. Pathology 1991, 23, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cabrera, J.L.; Ankeny, J.; Fernández-Montero, A.; Kales, S.N.; Smith, D.L. A Systematic Review and Meta-Analysis of Advanced Biomarkers for Predicting Incident Cardiovascular Disease among Asymptomatic Middle-Aged Adults. Int. J. Mol. Sci. 2022, 23, 13540. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar]
- Kianoush, S.; Yakoob, M.Y.; Al-Rifai, M.; DeFilippis, A.P.; Bittencourt, M.S.; Duncan, B.B.; Bensenor, I.M.; Bhatnagar, A.; Lotufo, P.A.; Blaha, M.J. Associations of Cigarette Smoking with Subclinical Inflammation and Atherosclerosis: ELSA-Brasil (The Brazilian Longitudinal Study of Adult Health). J. Am. Heart Assoc. 2017, 6, e005088. [Google Scholar] [CrossRef]
- Christofaro, D.G.D.; Ritti-Dias, R.M.; Tebar, W.R.; Werneck, A.O.; Bittencourt, M.S.; Cucato, G.G.; Santos, R.D. Are C-reactive protein concentrations affected by smoking status and physical activity levels? A longitudinal study. PLoS ONE 2023, 18, e0293453. [Google Scholar] [CrossRef]
- Abramson, J.L.; Vaccarino, V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch. Intern. Med. 2002, 162, 1286–1292. [Google Scholar] [CrossRef]
- Randall, Z.D.; Brouillard, A.M.; Deych, E.; Rich, M.W. Demographic, behavioral, dietary, and clinical predictors of high-sensitivity C-reactive protein: The National Health and Nutrition Examination Surveys (NHANES). Am. Heart J. Plus. 2022, 21, 100196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yatsuya, H.; Jeffery, R.W.; Langer, S.L.; Mitchell, N.; Flood, A.P.; Welsh, E.M.; Jaeb, M.A.; Laqua, P.S.; Crowell, M.; Levy, R.L. Changes in C-reactive protein during weight loss and the association with changes in anthropometric variables in men and women: LIFE Study. Int. J. Obes. 2011, 35, 684–691. [Google Scholar] [CrossRef]
- Floegel, A.; Chung, S.J.; von Ruesten, A.; Yang, M.; Chung, C.E.; Song, W.O.; Koo, S.I.; Pischon, T.; Chun, O.K. Antioxidant intake from diet and supplements and elevated serum C-reactive protein and plasma homocysteine concentrations in US adults: A cross-sectional study. Public Health Nutr. 2011, 14, 2055–2064. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am. J. Clin. Nutr. 2006, 84, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Helm, M.M.; Basu, A.; Richardson, L.A.; Chien, L.C.; Izuora, K.; Alman, A.C.; Snell-Bergeon, J.K. Longitudinal Three-Year Associations of Dietary Fruit and Vegetable Intake with Serum hs-C-Reactive Protein in Adults with and without Type 1 Diabetes. Nutrients 2024, 16, 2058. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Liu, S.; Mannino, D.M.; Giles, W.H.; Smith, S.J. C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults. Eur. J. Clin. Nutr. 2003, 57, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Tuuminen, T.; Sorsa, M.; Tornudd, M.; Poussa, T.; Antila, E.; Jaakkola, K. The association between high sensitivity C-reactive protein and micronutrient levels: A cross-sectional analysis based on a laboratory database. Clin. Nutr. ESPEN 2019, 33, 283–289. [Google Scholar] [CrossRef]
- Kubota, Y.; Moriyama, Y.; Yamagishi, K.; Tanigawa, T.; Noda, H.; Yokota, K.; Harada, M.; Inagawa, M.; Oshima, M.; Sato, S.; et al. Serum vitamin C concentration and hs-CRP level in middle-aged Japanese men and women. Atherosclerosis 2010, 208, 496–500. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Reddy, S.; Jayaraman, V.; Krishna, K.; Song, Q.; Wang, T.; Bei, K.; Rajasekaran, J.J. Association Between High-Sensitivity C-Reactive Protein (hs-CRP) Levels with Lipids and Micronutrients. Cureus 2024, 16, e67268. [Google Scholar] [CrossRef]
- Baik, I.; Cho, N.H.; Kim, S.H.; Han, B.G.; Shin, C. Genome-wide association studies identify genetic loci related to alcohol consumption in Korean men. Am. J. Clin. Nutr. 2011, 93, 809–816. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20, Erratum in Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef]
- Rural Development Administration. Korean Food Composition Table, 9.1st ed.; Rural Development Administration: Jeonju, Republic of Korea, 2019. (In Korean)
- Brown, C.C.; Kipnis, V.; Freedman, L.S.; Hartman, A.M.; Schatzkin, A.; Wacholder, S. Energy adjustment methods for nutritional epidemiology: The effect of categorization. Am. J. Epidemiol. 1994, 139, 323–338. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare; The Korean Nutrition Society. 2020 Dietary Reference Intakes for Koreans: Energy and Macronutrients; Ministry of Health and Welfare: Sejong, Republic of Korea, 2020.
- Chen, S.J.; Yen, C.H.; Huang, Y.C.; Lee, B.J.; Hsia, S.; Lin, P.T. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome. PLoS ONE 2012, 7, e45693. [Google Scholar] [CrossRef]
- Jafarnejad, S.; Boccardi, V.; Hosseini, B.; Taghizadeh, M.; Hamedifard, Z. A Meta-analysis of Randomized Control Trials: The Impact of Vitamin C Supplementation on Serum CRP and Serum hs-CRP Concentrations. Curr. Pharm. Des. 2018, 24, 3520–3528. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, M.; Basafa Roodi, P.; Abaj, F.; Shab-Bidar, S.; Saedisomeolia, A.; Asbaghi, O.; Lak, M. Influence of Vitamin A supplementation on inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2022, 12, 21384. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Kengne, A.P.; Mikhailidis, D.P.; Cicero, A.F.; Banach, M. Effects of selected dietary constituents on high-sensitivity C-reactive protein levels in U.S. adults. Ann. Med. 2018, 50, 1–6. [Google Scholar] [CrossRef]
- Crook, J.M.; Horgas, A.L.; Yoon, S.L.; Grundmann, O.; Johnson-Mallard, V. Vitamin C Plasma Levels Associated with Inflammatory Biomarkers, CRP and RDW: Results from the NHANES 2003–2006 Surveys. Nutrients 2022, 14, 1254. [Google Scholar] [CrossRef]
- Freeman, D.J.; Norrie, J.; Caslake, M.J.; Gaw, A.; Ford, I.; Lowe, G.D.; O’Reilly, D.S.; Packard, C.J.; Sattar, N.; West of Scotland Coronary Prevention Study. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002, 51, 1596–1600. [Google Scholar]
- Jayedi, A.; Rahimi, K.; Bautista, L.E.; Nazarzadeh, M.; Zargar, M.S.; Shab-Bidar, S. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies. Heart 2019, 105, 686–692. [Google Scholar] [CrossRef]
- Bolijn, R.; Muilwijk, M.; Nicolaou, M.; Galenkamp, H.; Stronks, K.; Tan, H.L.; Kunst, A.E.; van Valkengoed, I.G.M. The contribution of smoking to differences in cardiovascular disease incidence between men and women across six ethnic groups in Amsterdam, the Netherlands: The HELIUS study. Prev. Med. Rep. 2023, 31, 102105. [Google Scholar] [CrossRef]
- Lubbock, L.A.; Goh, A.; Ali, S.; Ritchie, J.; Whooley, M.A. Relation of low socioeconomic status to C-reactive protein in patients with coronary heart disease (from the heart and soul study). Am. J. Cardiol. 2005, 96, 1506–1511. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, K.N.; Lee, J.S.; Yoon, M.O.; Lee, H.S. Dietary intake and major source foods of vitamin E among Koreans: Findings of the Korea National Health and Nutrition Examination Survey 2016–2019. Nutr. Res. Pract. 2022, 16, 616–627. [Google Scholar] [CrossRef]
- Adam, S.K.; Sulaiman, N.A.; MdTop, A.G.; Jaarin, K. Heating reduces vitamin E content in palm and soy oils. Malays. J. Biochem. Mol. Biol. 2007, 15, 76–79. [Google Scholar]
Variables | All | Serum CRP Quartiles (Q) [Median, mg/L] | p Value for Trend | ||||
---|---|---|---|---|---|---|---|
1st Q [0.1] | 2nd Q [0.9] | 3rd Q [1.4] | 4th Q [2.2] | ||||
Age, years | 51.7 ± 8.8 | 51.0 ± 8.8 | 51.2 ± 8.7 | 52.0 ± 8.7 | 52.6 ± 8.9 | <0.001 | |
Men, % | 46.9 | 45.9 | 46.0 | 46.8 | 48.6 | 0.074 | |
Residential district: | urban, % | 52.1 | 52.6 | 54.8 | 51.9 | 49.5 | <0.05 |
rural, % | 47.9 | 47.4 | 45.2 | 48.1 | 50.5 | ||
Educational level ≥ high school, % | 44.6 | 46.0 | 45.7 | 44.3 | 42.5 | <0.05 | |
Low-income level 1, % | 62.9 | 61.4 | 60.7 | 64.0 | 65.3 | <0.01 | |
Office worker, % | 8.3 | 8.4 | 8.9 | 9.0 | 7.0 | 0.122 | |
Body mass index, kg/m2 | 24.4 ± 3.0 | 23.8 ± 2.9 | 24.2 ± 3.0 | 24.4 ± 2.9 | 25.1 ± 3.1 | <0.001 | |
Current smoker, % | 24.7 | 23.3 | 24.6 | 25.3 | 25.7 | 0.064 | |
Pack-years of cigarettes | 9.2 ± 15.6 | 8.8 ± 16.1 | 8.7 ± 14.9 | 9.4 ± 15.3 | 9.9 ± 15.8 | <0.05 | |
Current alcohol drinker, % | 47.9 | 47.2 | 47.2 | 48.2 | 49.0 | 0.191 | |
Physical activity 2, MET-hours/day | 16.4 ± 17.6 | 16.3 ± 17.4 | 15.9 ± 17.5 | 16.6 ± 17.9 | 16.5 ± 17.6 | 0.511 | |
Presence of DM or HTN, % | 48.8 | 43.1 | 44.8 | 50.9 | 56.0 | <0.001 | |
History of CVD or cancer diagnosis, % | 9.5 | 9.1 | 9.4 | 9.1 | 10.4 | 0.215 | |
Dietary supplementation, % | 19.0 | 20.1 | 17.8 | 19.4 | 18.8 | 0.561 | |
Average daily dietary intake | |||||||
Calories, kcal | 1881.8 ± 523.3 | 1897.9 ± 547.8 | 1892.4 ± 512.8 | 1872.7 ± 525.2 | 1864.6 ± 505.9 | <0.05 | |
Vitamin A, RAE | 534.0 ± 389.4 | 555.5 ± 408.3 | 521.6 ± 377.7 | 535.4 ± 394.8 | 522.7 ± 375.0 | <0.05 | |
Retinol, μg | 68.0 ± 61.8 | 70.7 ± 66.1 | 68.8 ± 63.6 | 68.9 ± 60.7 | 63.9 ± 56.4 | <0.01 | |
β-carotene, mg | 2.7 ± 2.3 | 2.8 ± 2.4 | 2.7 ± 2.3 | 2.7 ± 2.3 | 2.7 ± 2.2 | 0.114 | |
Vitamin C, mg | 127.6 ± 93.7 | 134.5 ± 99.6 | 126.0 ± 97.0 | 124.7 ± 87.7 | 125.0 ± 89.6 | <0.01 | |
Vitamin E, mg | 9.3 ± 4.9 | 9.6 ± 5.3 | 9.3 ± 4.6 | 9.3 ± 4.8 | 9.2 ± 4.6 | <0.05 |
Antioxidant Vitamin Intake | Quintiles (Q) | Cases | Hazard Ratio (95% Confidence Interval) | ||
---|---|---|---|---|---|
[Median] | PY | Age-Adjusted | Multivariable Model 1 | Multivariable Model 2 | |
Vitamin A, RAE | 1st Q [214] | 142/10,212 | Reference | Reference | Reference |
2nd Q [329] | 120/10,909 | 0.82 (0.64, 1.04) | 0.77 (0.60, 0.98) | 0.92 (0.70, 1.21) | |
3rd Q [438] | 99/10,921 | 0.66 (0.51, 0.86) | 0.59 (0.45, 0.77) | 0.72 (0.52, 0.99) | |
4th Q [580] | 136/10,697 | 0.95 (0.75, 1.20) | 0.79 (0.61, 1.02) | 0.96 (0.68, 1.34) | |
5th Q [890] | 152/10,432 | 1.09 (0.87, 1.37) | 0.84 (0.64, 1.11) | 0.93 (0.64, 1.37) | |
Retinol, μg | 1st [14] | 145/10,287 | Reference | Reference | Reference |
2nd [34] | 122/10,796 | 0.86 (0.68, 1.10) | 0.81 (0.63, 1.03) | 0.87 (0.68, 1.12) | |
3rd [55] | 107/10,858 | 0.76 (0.59, 0.98) | 0.72 (0.55, 0.93) | 0.78 (0.60, 1.03) | |
4th [79] | 130/10,748 | 0.97 (0.76, 1.24) | 0.86 (0.66, 1.11) | 0.92 (0.70, 1.21) | |
5th [124] | 145/10,483 | 1.09 (0.86, 1.39) | 0.92 (0.70, 1.22) | 0.92 (0.69, 1.24) | |
β-carotene, μg | 1st [1015] | 141/10,251 | Reference | Reference | Reference |
2nd [1610] | 125/10,832 | 0.87 (0.68, 1.10) | 0.80 (0.63, 1.02) | 0.94 (0.72, 1.23) | |
3rd [2139] | 96/10,944 | 0.64 (0.50, 0.84) | 0.57 (0.43, 0.74) | 0.69 (0.50, 0.95) | |
4th [2914] | 139/10,665 | 0.98 (0.77, 1.24) | 0.82 (0.63, 1.05) | 0.97 (0.70, 1.33) | |
5th [4721] | 148/10,481 | 1.05 (0.83, 1.32) | 0.82 (0.63, 1.07) | 0.89 (0.62, 1.28) | |
Vitamin C, mg | 1st [52] | 146/10,174 | Reference | Reference | Reference |
2nd [78] | 120/10,731 | 0.77 (0.60, 0.98) | 0.73 (0.57, 0.94) | 0.83 (0.63, 1.09) | |
3rd [101] | 110/10,937 | 0.70 (0.55, 0.90) | 0.64 (0.50, 0.83) | 0.72 (0.53, 0.98) | |
4th [133] | 120/10,902 | 0.76 (0.60, 0.97) | 0.68 (0.53, 0.88) | 0.70 (0.49, 0.98) | |
5th [202] | 153/10,428 | 1.01 (0.81, 1.27) | 0.83 (0.63, 1.09) | 0.74 (0.51, 1.09) | |
Vitamin E, mg | 1st [4.6] | 147/10,360 | Reference | Reference | Reference |
2nd [6.5] | 101/10,798 | 0.69 (0.53, 0.89) | 0.65 (0.50, 0.85) | 0.78 (0.58, 1.05) | |
3rd [8.1] | 115/10,956 | 0.80 (0.62, 1.02) | 0.71 (0.54, 0.92) | 0.95 (0.68, 1.32) | |
4th [10.1] | 119/10,821 | 0.85 (0.66, 1.09) | 0.73 (0.55, 0.98) | 1.00 (0.68, 1.46) | |
5th [14.1] | 167/10,238 | 1.26 (1.01, 1.59) | 1.00 (0.72, 1.40) | 1.31 (0.83, 2.08) |
Stepwise Selection | Selected Variables 1 | Unit for | Reference Group for | Multivariable HR 1 |
---|---|---|---|---|
Continuous Variables | Categorical Variables | (95% CI) | ||
1 | Presence of DM or HTN | Absence | 1.48 (1.25, 1.75) | |
2 | Calorie intake | 500 kcal | 1.17 (1.07, 1.27) | |
3 | Age | 1 year | 1.02 (1.01, 1.03) | |
4 | Body mass index | 1 kg/m2 | 1.06 (1.03, 1.09) | |
5 | Men | Women | 1.44 (1.22, 1.71) | |
6 | Education ≤ middle school | ≥High school | 1.29 (1.07, 1.55) | |
7 | Physical activity | 5 MET-hours/day | 0.97 (0.95, 0.99) | |
8 | Vitamin C intake | |||
2nd quintile | 1st quintile | 0.72 (0.56, 0.92) | ||
3rd quintile | 1st quintile | 0.64 (0.49, 0.82) | ||
4th quintile | 1st quintile | 0.65 (0.51, 0.85) | ||
5th quintile | 1st quintile | 0.80 (0.61, 1.06) |
Stratified Analysis | Groups | Multivariable HR (95% CI) for Vitamin C Tertiles | ||
---|---|---|---|---|
1st Tertile | 2nd Tertile | 3rd Tertile | ||
Disease-stratified | Absence of DM or HTN | Reference | 0.66 (0.44, 0.98) | 0.91 (0.56, 1.46) |
Presence of DM or HTN | Reference | 0.78 (0.59, 1.03) | 0.62 (0.44, 0.89) | |
Age-stratified | <50 years | Reference | 0.83 (0.57, 1.21) | 0.99 (0.63, 1.56) |
≥50 years | Reference | 0.65 (0.48, 0.87) | 0.64 (0.45, 0.93) | |
BMI-stratified | <23 kg/m2 | Reference | 0.48 (0.30, 0.76) | 0.41 (0.24, 0.72) |
≥23 kg/m2 | Reference | 0.76 (0.58, 0.99) | 0.84 (0.60, 1.16) | |
Sex-stratified | Women | Reference | 0.85 (0.60, 1.18) | 1.03 (0.67, 1.58) |
Men | Reference | 0.62 (0.45, 0.85) | 0.63 (0.43, 0.93) | |
Education-stratified | ≥High school | Reference | 0.65 (0.45, 0.95) | 0.84 (0.53, 1.32) |
≤Middle school | Reference | 0.64 (0.48, 0.87) | 0.66 (0.46, 0.96) | |
PA-stratified | ≥Median value MET-hours/day | Reference | 0.94 (0.68, 1.31) | 0.95 (0.62, 1.45) |
<Median value MET-hours/day | Reference | 0.56 (0.40, 0.77) | 0.58 (0.39, 0.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, I. Prospective Associations of Dietary Antioxidant Vitamin Intake and 8-Year Risk of Elevated Serum C-Reactive Protein Levels. Nutrients 2025, 17, 1020. https://doi.org/10.3390/nu17061020
Baik I. Prospective Associations of Dietary Antioxidant Vitamin Intake and 8-Year Risk of Elevated Serum C-Reactive Protein Levels. Nutrients. 2025; 17(6):1020. https://doi.org/10.3390/nu17061020
Chicago/Turabian StyleBaik, Inkyung. 2025. "Prospective Associations of Dietary Antioxidant Vitamin Intake and 8-Year Risk of Elevated Serum C-Reactive Protein Levels" Nutrients 17, no. 6: 1020. https://doi.org/10.3390/nu17061020
APA StyleBaik, I. (2025). Prospective Associations of Dietary Antioxidant Vitamin Intake and 8-Year Risk of Elevated Serum C-Reactive Protein Levels. Nutrients, 17(6), 1020. https://doi.org/10.3390/nu17061020